Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole-genome sequencing (WGS) of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program.
View Article and Find Full Text PDFBackground: Approximately half of the patients with acute ischemic stroke who receive intravenous thrombolysis (IVT) do not achieve an excellent outcome. Remote ischemic conditioning (RIC) as a promising neuroprotective treatment may improve clinical outcomes in this population. This study aimed to assess the efficacy and safety of RIC in patients with IVT.
View Article and Find Full Text PDFThe discovery of ferromagnetism in van der Waals (vdW) materials has enriched the understanding of two-dimensional (2D) magnetic orders and opened new avenues for fundamental physics research and next generation spintronics. However, achieving ferromagnetic order at room temperature, along with strong perpendicular magnetic anisotropy, remains a significant challenge. In this work, we report wafer-scale growth of vdW ferromagnet FeGaTe using molecular beam epitaxy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
The global solar market is booming with a rapid growth in installed integrated devices, while photovoltaic (PV) systems are suffering from waste heat, which causes the decline of the photovoltaic conversion efficiency (PCE). This study presents the seamless integration of the ionic thermoelectric generator (iTEG) layer with traditional PV modules, facilitating the exploitation of waste heat and augmenting the overall power output. Experimental results validate the effectiveness of the iTEG, demonstrating substantial power generation and a consistent energy output.
View Article and Find Full Text PDFBackground: Computational modeling indicated that pathological high shear stress (HSS; 100 dyn/cm) is generated in pulmonary arteries (PAs; 100-500 µm) in congenital heart defects causing PA hypertension (PAH) and in idiopathic PAH with occlusive vascular remodeling. Endothelial-to-mesenchymal transition (EndMT) is a feature of PAH. We hypothesize that HSS induces EndMT, contributing to the initiation and progression of PAH.
View Article and Find Full Text PDFSix isoquinoline alkaloids were identified from the alkaloid-rich fraction of Corydalis hendersonii Hemsl, including five previously undescribed isoquinoline alkaloids hendersines J-M (1a, 1b, and 2-4) and isobicuculline (5), a compound reported for the first time from a natural source. Their structures were elucidated based on spectroscopic analysis of HR-ESI-MS, 1D and 2D NMR, X-ray diffraction, and ECD. Compounds 1a and 1b represent a pair of rare three-nitrogen isoquinoline alkaloid enantiomers, while 2 and 3 are isoquinoline alkaloids featuring a benzo-fused N-heterocycle.
View Article and Find Full Text PDFBackground: The heterogeneity within breast cancer and its microenvironment are associated with metastasis. Analyzing distinct tumor subregions using habitat analysis and characterizing the tumor microenvironment through radiomics may be valuable for predicting axillary lymph node metastasis (ALNM) in breast cancer. This study aimed to develop and validate a nomogram for predicting ALNM in breast cancer patients by integrating clinicopathological, intra- or peri-tumoral radiomic, and habitat signatures based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and determine the optimal peritumoral region size for accurate prediction.
View Article and Find Full Text PDFObjective: Recent data using NHANES and Optum Claims data (OCD) showed an increase in primary hypothyroidism (HT) prevalence in the United States following the 2002 NHANES III report. Using these data, we characterized treatment patterns of overt HT (OHT) in the United States.
Methods: Data on adults with OHT were collected from NHANES (2009-2012) and OCD (2012-2019).
Purpose: Clinical adoption of NK cell immunotherapy is underway for medulloblastoma and osteosarcoma, however there is currently little feedback on cell fate after administration. We propose magnetic particle imaging (MPI) may have applications for the quantitative detection of NK cells.
Procedures: Human-derived NK-92 cells were labeled by co-incubation with iron oxide nanoparticles (VivoTrax™) for 24 h then excess nanoparticles were washed with centrifugation.
Smart farming with outdoor monitoring systems is critical to address food shortages and sustainability challenges. These systems facilitate informed decisions that enhance efficiency in broader environmental management. Existing outdoor systems equipped with energy harvesters and self-powered sensors often struggle with fluctuating energy sources, low durability under harsh conditions, non-transparent or non-biocompatible materials, and complex structures.
View Article and Find Full Text PDFStructural-functional integrated polymer fibers with exciting properties are increasingly important for next-generation technologies. Herein, we report the structural-functional integrated graphene-skinned aramid fiber (GRAF) featuring high conductivity, high strength, and light weight, which is weaved for efficient electromagnetic interference (EMI) shielding. Graphene was self-assembled onto the surface of aramid fibers through a dip-coating strategy using an aramid polyanion (APA) as the binder and the etchant.
View Article and Find Full Text PDFBackground: Sentinel lymph node biopsy (SLNB) is an important cancer diagnostic staging procedure. Conventional SLNB procedures with Tc radiotracers and scintigraphy are constrained by tracer half-life and, in some cases, insufficient image resolution. Here, we explore an alternative magnetic (nonradioactive) image-guided SLNB procedure.
View Article and Find Full Text PDFDiscoveries of above-room-temperature intrinsic ferromagnetism in two-dimensional (2D) van der Waals (vdW) materials offer a platform for studying fundamental 2D magnetism and spintronic devices, especially the recently discovered above-room-temperature 2D vdW FeGaTe (FGaT). However, the magnetic mechanism in FGaT remains elusive. Here, a detailed investigation using magnetic force microscopy on the thickness-dependent magnetic behavior of FGaT single crystals is reported.
View Article and Find Full Text PDFGlucagon-like peptide-1 (GLP-1) analogs are important therapeutics for type 2 diabetes and obesity. Ecnoglutide (XW003) is a novel, long-acting GLP-1 analog. We conducted a Phase 2, randomized, double-blind, placebo-controlled study enrolling 145 adults with T2DM.
View Article and Find Full Text PDFCurrent cancer immunotherapy predominately focuses on eliciting type 1 immune responses fighting cancer; however, long-term complete remission remains uncommon. A pivotal question arises as to whether type 2 immunity can be orchestrated alongside type 1-centric immunotherapy to achieve enduring response against cancer. Here we show that an interleukin-4 fusion protein (Fc-IL-4), a typical type 2 cytokine, directly acts on CD8 T cells and enriches functional terminally exhausted CD8 T (CD8 T) cells in the tumour.
View Article and Find Full Text PDFNanoparticles are promising for drug delivery applications, with several clinically approved products. However, attaining high nanoparticle accumulation in solid tumours remains challenging. Here we show that tumour cell-derived small extracellular vesicles (sEVs) block nanoparticle delivery to tumours, unveiling another barrier to nanoparticle-based tumour therapy.
View Article and Find Full Text PDFBronchiolitis obliterans syndrome (BOS) after hematopoietic cell transplantation (HCT) is associated with substantial morbidity and mortality. Quantitative computed tomography (qCT) can help diagnose advanced BOS meeting National Institutes of Health (NIH) criteria (NIH-BOS) but has not been used to diagnose early, often asymptomatic BOS (early BOS), limiting the potential for early intervention and improved outcomes. Using pulmonary function tests (PFTs) to define NIH-BOS, early BOS, and mixed BOS (NIH-BOS with restrictive lung disease) in patients from 2 large cancer centers, we applied qCT to identify early BOS and distinguish between types of BOS.
View Article and Find Full Text PDFBackground: The cardiac surgery-associated acute kidney injury (CSA-AKI) occurs in up to 1 out of 3 patients. Off-pump coronary artery bypass grafting (OPCABG) is one of the major cardiac surgeries leading to CSA-AKI. Early identification and timely intervention are of clinical significance for CSA-AKI.
View Article and Find Full Text PDFIn the investigation of heterotrimeric G protein-mediated signal transduction in planta, their roles in the transmittance of low K stimuli remain to be elucidated. Here, we found that the primary root growth of wild-type Arabidopsis was gradually inhibited with the decrease of external K concentrations, while the primary root of the mutants for G protein β subunit AGB1 and γ subunits AGG1, AGG2 and AGG3 could still grow under low K conditions (LK). Exogenous NAA application attenuated primary root elongation in agb1 and agg1/2/3 but promoted the growth in wild-type seedlings under LK stress.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2024
The development of bioadhesives with strong adhesion and on-demand adhesion-detachment behavior is still critically important and challenging for facilitating painless and damage-free removal in clinical applications. In this work, for the first time, we report the easy fabrication of novel polyurethane-urea (PUU)-based bioadhesives with thermoresponsive on-demand adhesion and detachment behavior. The PUU copolymer was synthesized by a simple copolymerization of low-molecular-weight, hydrophilic, and biocompatible poly(ethylene glycol), glyceryl monolaurate (GML, a special chain extender with a long side hydrophobic alkyl group), and isophorone diisocyanate (IPDI).
View Article and Find Full Text PDFSoft elastomer composites are promising functional materials for engineer interfaces, where the miniaturized electronic devices have triggered increasing demand for effective heat dissipation, high fracture energy, and antifatigue fracture. However, such a combination of these properties can be rarely met in the same elastomer composites simultaneously. Here a strategy is presented to fabricate a soft, extreme fracture tough (3316 J m) and antifatigue fracture (1052.
View Article and Find Full Text PDFMultifunctional hydrogel adhesives are highly desirable in wound healing applications, yet their preparation often requires complex material system design to achieve. Herein, a straightforward one-pot two-step polymerization method is developed to prepare adhesive hydrogels for wound dressing based on protocatechuic acid (PCA), polyacrylic acid (PAA), and polyamidoamine-epichlorohydrin (PAE), where PCA provides the catechol groups for strong adhesion, PAA serves as the primary polymer matrix, and PAE acts as a bridge connecting PCA and PAA. This design results in a PAA-PAE-PCA hydrogel having a remarkable instant 90-degree peeling interfacial toughness of 431 J m on porcine skin, which is further amplified to 615 J m after 30 minutes.
View Article and Find Full Text PDFBackground And Objectives: Cardiovascular health (CVH) has been associated with cognitive decline and dementia, but the extent to which CVH affects brain health remains unclear. We investigated the association of CVH, assessed using Life's Essential 8 (LE8), with neuroimaging-based brain age and brain-predicted age difference (brain-PAD).
Methods: This longitudinal community-based study was based on UK Biobank participants aged 40-69 years who were free from dementia and other neurologic diseases at baseline.
The multisensory responsiveness of hydrogels positions them as promising candidates for artificial skin, whereas the mismatch of modulus between soft hydrogels and hard electrodes as well as the poor adhesion and conductance at the interface greatly impairs the stability of electronics devices. Herein, we propose an in situ postprocessing approach utilizing electrochemical reactions between metals (Zn, etc.) and hydrogels to synergistically achieve strong adhesion of the hydrogel-electrode interface, low interfacial impedance, and local strain isolation due to the structural densification of the hydrogel network.
View Article and Find Full Text PDF