Publications by authors named "J-G Chen"

Critical issues such as leakage, degradation, and thermal response hysteresis have become the focus in the application of phase change materials (PCMs) in area such as thermal management of fabrics. The encapsulation of PCMs prepared as microcapsules using polysiloxanes, etc. as a component unit of crosslinking agents represents a highly promising avenue of research.

View Article and Find Full Text PDF

Suitable planting systems are critical for the physicochemical and bioactivities of strawberry ( Duch.) polysaccharides (SPs). In this study, SPs were prepared through hot water extraction, and the differences in physicochemical characteristics and bioactivities between SPs derived from elevated matrix soilless planting strawberries (EP-SP) and those from and conventional soil planting strawberries (GP-SP) were investigated.

View Article and Find Full Text PDF

Solar energy-driven steam generation is a renewable, energy-efficient technology that can alleviate the global clean water shortage through seawater desalination. However, the contradiction between resistance to salinity accretion and maintaining high water evaporation properties remains a challenging bottleneck. Herein, we have developed a biomimetic multiscale-ordered hydrogel-based solar water evaporator for efficient seawater desalination.

View Article and Find Full Text PDF

Background: The decrease in S-nitrosoglutathione reductase (GSNOR) leads to an elevation of S-nitrosylation, thereby exacerbating the progression of cardiomyopathy in response to hemodynamic stress. However, the mechanisms under GSNOR decrease remain unclear. Here, we identify NEDD4 (neuronal precursor cell expressed developmentally downregulated 4) as a novel molecule that plays a crucial role in the pathogenesis of pressure overload-induced cardiac hypertrophy, by modulating GSNOR levels, thereby demonstrating significant therapeutic potential.

View Article and Find Full Text PDF

Biomass foam with porous structure has broad application prospects in thermal energy management. However, traditional foams can only passively insulate heat, unable to effectively store thermal energy and prolong the insulation time. In this work, microcapsules rich in paraffin were prepared using the Pickering emulsion template method with phosphorylated cellulose nanocrystals (CNC) as an emulsifier.

View Article and Find Full Text PDF

Introduction: Age-associated depletion in nicotinamide adenine dinucleotide (NAD+) concentrations has been implicated in metabolic, cardiovascular, and neurodegenerative disorders. Supplementation with NAD+ precursors, such as nicotinamide riboside (NR), offers a potential therapeutic avenue against neurodegenerative pathologies in aging, Alzheimer's disease, and related dementias. A crossover, double-blind, randomized placebo (PBO) controlled trial was conducted to test the safety and efficacy of 8 weeks' active treatment with NR (1 g/day) on cognition and plasma AD biomarkers in older adults with subjective cognitive decline and mild cognitive impairment.

View Article and Find Full Text PDF

The largest risk factor for dementia is age. Heterochronic blood exchange studies have uncovered age-related blood factors that demonstrate 'pro-aging' or 'pro-youthful' effects on the mouse brain. The clinical relevance and combined effects of these factors for humans is unclear.

View Article and Find Full Text PDF

This investigation explores the potential of co-incorporating nickel (Ni) and cobalt (Co) into copper oxide (CuO) nanostructures for bifunctional electrochemical charge storage and oxygen evolution reactions (OER). A facile wet chemical synthesis method is employed to co-incorporate Ni and Co into CuO, yielding diverse nanostructured morphologies, including rods, spheres, and flake. The X-ray diffraction (XRD) and Raman analyses confirmed the formation of NiCo-CuO nanostructure, with minor phases of nickel oxide (NiO) and cobalt tetraoxide (CoO).

View Article and Find Full Text PDF

Voltage-gated ion channels (VGICs) are crucial targets for neuropsychiatric therapeutics owing to their role in controlling neuronal excitability and the established link between their dysfunction and neurological diseases, highlighting the importance of identifying modulators with distinct mechanisms. Here we report two small-molecule modulators with the same chemical scaffold, Ebio2 and Ebio3, targeting a potassium channel KCNQ2, with opposite effects: Ebio2 acts as a potent activator, whereas Ebio3 serves as a potent and selective inhibitor. Guided by cryogenic electron microscopy, patch-clamp recordings and molecular dynamics simulations, we reveal that Ebio3 attaches to the outside of the inner gate, employing a unique non-blocking inhibitory mechanism that directly squeezes the S6 pore helix to inactivate the KCNQ2 channel.

View Article and Find Full Text PDF

Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) can mediate tumor regression, including complete and durable responses, in a range of solid cancers, most notably in melanoma. However, its wider application and efficacy has been restricted by the limited accessibility, proliferative capacity and effector function of tumor-specific TIL. Here, we develop a platform for the efficient identification of tumor-specific TCR genes from diagnostic tumor biopsies, including core-needle biopsies frozen in a non-viable format, to enable engineered T cell therapy.

View Article and Find Full Text PDF

Large language models (LLMs) have shown promise in medical question answering, with Med-PaLM being the first to exceed a 'passing' score in United States Medical Licensing Examination style questions. However, challenges remain in long-form medical question answering and handling real-world workflows. Here, we present Med-PaLM 2, which bridges these gaps with a combination of base LLM improvements, medical domain fine-tuning and new strategies for improving reasoning and grounding through ensemble refinement and chain of retrieval.

View Article and Find Full Text PDF

Up to 50-70% of patients with liver cirrhosis develop hepatic encephalopathy (HE), which is closely related to gut microbiota dysbiosis, with an unclear mechanism. Here, by constructing gut-brain modules to assess bacterial neurotoxins from metagenomic datasets, we found that phenylalanine decarboxylase (PDC) genes, mainly from Ruminococcus gnavus, increased approximately tenfold in patients with cirrhosis and higher in patients with HE. Cirrhotic, not healthy, mice colonized with R.

View Article and Find Full Text PDF

The demand for exploring and investigating novel starches for various applications has been high, yet starches abundant in Millettia speciosa Champ (M. speciose) plants have barely been studied. This study aims to investigate the multiscale structure and physicochemical properties, especially good hot-extrusion 3D printability of M.

View Article and Find Full Text PDF

Phase change fibers (PCFs) can effectively store and release heat, improve energy efficiency, and provide a basis for a wide range of energy applications. Improving energy storage density and preserving flexibility are the primary issues in the efficient manufacture and application development of PCFs. Herein, we have successfully fabricated a suite of flexible PCFs with high energy storage density, which use hollow carbon fibers (HCFs) encapsulated phase change materials (PCMs) to provide efficient heat storage and release, thereby enhancing energy efficiency and underpinning a broad range of energy applications.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on using machine learning and PET imaging to predict how long patients with early-stage non-small cell lung cancer (NSCLC) can expect to live without disease progression.
  • Researchers analyzed data from 234 patients and created a model that combined radiomic features from tumor and surrounding areas with clinical data, resulting in a highly accurate predictive tool for patient outcomes.
  • The findings indicated that certain imaging features can effectively distinguish between high-risk and low-risk patients, highlighting the importance of these radiomic signatures as independent markers for patient prognosis.
View Article and Find Full Text PDF

Chemical reprogramming enables the generation of human pluripotent stem (hCiPS) cells from somatic cells using small molecules, providing a promising strategy for regenerative medicine. However, the current method is time consuming, and some cell lines from different donors are resistant to chemical induction, limiting the utility of this approach. Here, we developed a fast reprogramming system capable of generating hCiPS cells in as few as 10 days.

View Article and Find Full Text PDF

Exceptionally diverse type V CRISPR-Cas systems provide numerous RNA-guided nucleases as powerful tools for DNA manipulation. Two known Cas12e nucleases, DpbCas12e and PlmCas12e, are both effective in genome editing. However, many differences exist in their in vitro dsDNA cleavage activities, reflecting the diversity in Cas12e's enzymatic properties.

View Article and Find Full Text PDF

Background And Purpose: There are multiple MRI perfusion techniques, with limited available literature comparing these techniques in the grading of pediatric brain tumors. For efficiency and limiting scan time, ideally only one MRI perfusion technique can be used in initial imaging. We compared DSC, DCE, and IVIM along with ADC from DWI for differentiating high versus low grade pediatric brain tumors.

View Article and Find Full Text PDF

Fatty acids, in particular, are valued as phase change materials (PCMs) for their non-toxic, biodegradable nature and thermal stability. However, the leakage and supercooling issues during phase transitions limit their application. Microencapsulation of PCMs, while improving thermal response, often leads to supercooling, complicating temperature regulation and increasing energy consumption.

View Article and Find Full Text PDF

The application of organic solid-liquid phase change materials (PCMs) is limited for the leakage problem after phase change and high rigidity. In this work, a novel flexible solid-solid PCM (DXPCM) was synthesized using a block copolymerization process with polyethylene glycol (PEG) as the energy storage segment. The phase transition temperature (from 36.

View Article and Find Full Text PDF

Herein, we introduce a series of ionic covalent organic frameworks (iCOFs) with a focus on addressing the challenge of water collection at low relative humidity levels below 25 %. These iCOFs are characterized by numerous hydrophilic sites and high water stability, enabling efficient water vapor adsorption even at relatively low humidity levels. Through the use of various hygroscopic salt cations and precise control of ion concentration within the pores, the water state within the iCOFs pores can be effectively managed.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses how transferring DNA from organelles to the nucleus is crucial for the evolution of eukaryotes, highlighted by a study that identified a specific gene (BSTR) linked to photosynthesis in Populus trichocarpa.
  • BSTR has three exons, with two derived from endophytic sources and one including a large part of a plastid gene related to Rubisco, which is essential for photosynthesis.
  • Overexpressing BSTR in poplar and Arabidopsis plants led to significant increases in plant height (up to 200%) and biomass (up to 200%), demonstrating its potential for enhancing growth under field conditions.
View Article and Find Full Text PDF

Exploiting inexpensive composite phase change materials (PCMs) with comprehensive characteristics of high encapsulation efficiency, good leakage resistance, strong flexibility, high heat conductivity, and powerful light absorption is considerably imperative for their solar-thermal and solar-thermal-electric conversion. Herein, polypyrrole (PPy) modified halloysite (HNT/PPy) was assembled into the pores of melamine formaldehyde (MF) sponge to construct hierarchical porous structure (MHP), in which PPy serves as light absorber and heat conducting agent to consolidate the light absorption and thermal conductivity, while the interwoven HNT in MF not only acts as carrier to provide sufficient space for guaranteeing more PCMs' encapsulation, but also dramatically narrows MF's pore size and prevents PCMs' leakage. As expected, the MHP can encapsulate as high as 95 wt% of polyethylene glycol (PEG) with extremely high latent heat of 177.

View Article and Find Full Text PDF

Background: Pulsed field ablation (PFA) has gained attention in cardiac electrophysiology, but data on its application to paroxysmal supraventricular tachycardia are limited. This study aimed to assess the feasibility and safety of PFA and its combination with radiofrequency ablation for treating paroxysmal supraventricular tachycardia.

Methods: A prospective, multicenter, single-arm study was conducted across 8 centers in China.

View Article and Find Full Text PDF

Surgical removal of primary tumors was shown to reverse tumor-mediated immune suppression in pre-clinical models with metastatic disease. However, how cytoreductive surgery in the metastatic setting modulates the immune responses in patients, especially in the context of immune checkpoint therapy (ICT)-containing treatments is not understood. Here, we report the first prospective, non-comparative clinical trial to evaluate the feasibility, clinical benefits, and immunologic changes of combining three different ICT-containing strategies with cytoreductive surgery or biopsy for patients with metastatic clear cell renal cell carcinoma (mccRCC).

View Article and Find Full Text PDF