In this study, we present a PDMS-based microfluidic platform for the fabrication of both liposomes and polymersomes. Based on a double-emulsion template formed in flow-focusing configuration, monodisperse liposomes and polymersomes are produced in a controlled manner after solvent extraction. Both types of vesicles can be formed from the exact same combination of fluids and are stable for at least three months under ambient storage conditions.
View Article and Find Full Text PDFEur Phys J E Soft Matter
July 2006
We report the effect of an anisotropic polymer network formed from an achiral photoreactive monomer in a short-pitch chiral SmC* phase on the distortion and the unwinding of the helical structure of the ferroelectric phase. The electro-optical behaviour and ferroelectric properties were experimentally determined for films containing various polymer concentrations. The critical field, E(u), for the transition from the distorted structure to the homogeneous state was measured as a function of polymer concentration.
View Article and Find Full Text PDFEur Phys J E Soft Matter
September 2003
Mesoscopic media such as porous materials or colloidal dispersions strongly influence the dynamics of the embedded fluid. In the strong-adsorption regime, it was recently proposed that the effective surface diffusion on flat surface is anomalous and exhibits long-time pathology, enlarging the time domain of the embedded-fluid dynamics towards the low-frequency regime. An interesting way to probe such a slow interfacial process is to use the field-cycling NMR relaxometry.
View Article and Find Full Text PDFFullerene single-wall nanotubes (SWNTs) were produced in yields of more than 70 percent by condensation of a laser-vaporized carbon-nickel-cobalt mixture at 1200degreesC. X-ray diffraction and electron microscopy showed that these SWNTs are nearly uniform in diameter and that they self-organize into "ropes," which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms. The x-ray form factor is consistent with that of uniformly charged cylinders 13.
View Article and Find Full Text PDF