Aims: Non-invasive myocardial scar characterization with cardiac magnetic resonance (CMR) has been shown to accurately identify conduction channels and can be an important aid for ventricular tachycardia (VT) ablation. A new mapping method based on targeting deceleration zones (DZs) has become one of the most commonly used strategies for VT ablation procedures. The aim of the study was to analyse the capability of CMR to identify DZs and to find predictors of arrhythmogenicity in CMR channels.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
January 2024
Aims: Heterogeneous tissue channels (HTCs) detected by late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) are related to ventricular arrhythmias, but there are few published data about their arrhythmogenic characteristics.
Methods And Results: We enrolled 34 consecutive patients with ischaemic and non-ischaemic cardiomyopathy who were referred for ventricular tachycardia (VT) ablation. LGE-CMR was performed prior to ablation, and the HTCs were analyzed.
Aims: Electrical reconnection of pulmonary veins (PVs) is considered an important determinant of recurrent atrial fibrillation (AF) after pulmonary vein isolation (PVI). To date, AF recurrences almost automatically trigger invasive repeat procedures, required to assess PVI durability. With recent technical advances, it is becoming increasingly common to find all PVs isolated in those repeat procedures.
View Article and Find Full Text PDFBackground: Ventricular tachycardia (VT) is caused by the presence of a slow conduction channel (CC) of border zone (BZ) tissue inside the scar-core tissue. Electroanatomic mapping can depict this tissue by voltage mapping. Areas of slow conduction can be detected as late potentials (LPs) and their abolition is the most accepted ablation endpoint.
View Article and Find Full Text PDF