Background: All studied photosensitizers for virus inactivation impair RBCs. To reduce damage to the RBCs without affecting virucidal activity, selective protection of the RBCs is necessary. The ability of the band 3 ligand, dipyridamole, to react with singlet oxygen and to increase the selectivity of photosterilization was investigated.
View Article and Find Full Text PDFAscorbate is readily oxidized in aqueous solution by ascorbate oxidase. Ascorbate radicals are formed, which disproportionate to ascorbate and dehydroascorbic acid. Addition of erythrocytes with increasing intracellular ascorbate concentrations decreased the oxidation of ascorbate in a concentration-dependent manner.
View Article and Find Full Text PDFMerocyanine 540 (MC540)-mediated photodynamic damage to erythrocytes was strongly reduced when illumination was performed at pH 8.5 as compared to pH 7.4.
View Article and Find Full Text PDFBackground: Phthalocyanines are useful sensitizers for photodynamic sterilization of red cell concentrates. Various lipid-enveloped viruses can be inactivated with only limited red cell damage. Because white cells are involved in the immunomodulatory effects of blood transfusions, the study of the effect of photodynamic treatment on these cells is imperative.
View Article and Find Full Text PDFVesicular stomatitis virus (VSV) was used as a model virus to study the processes involved in photoinactivation by aluminum phthalocyanine tetrasulfonate (AlPcS4) or silicon phthalocyanine HOSiPcOSi(CH3)2(CH2)3N(CH3)2 (Pc4) and red light. Previously a very rapid decrease in the intracellular viral RNA synthesis after photodynamic treatment was observed. This decrease was correlated to different steps in the replication cycle.
View Article and Find Full Text PDF