The increasing miniaturization of everyday devices necessitates advancements in surface-sensitive techniques to access phenomena more effectively. Magnetic resonance methods, such as nuclear or electron paramagnetic resonance, play a crucial role due to their unique analytical capabilities. Recently, the development of a novel plasmonic metasurface resonator aimed at boosting the THz electron magnetic response in 2D materials resulted in a significant magnetic field enhancement, confirmed by both numerical simulations and experimental data.
View Article and Find Full Text PDFMolecular magnetic materials based on 1,2-diamidobenzenes are well known and have been intensively studied both experimentally and computationally. They possess interesting magnetic properties as well as redox activity. In this work, we present the synthesis and investigation of potent synthons for constructing discrete metal-organic architectures featuring 1,2-diamidobenzene-coordinated metal centres.
View Article and Find Full Text PDFConjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM-TTM diradicaloid, which exhibits high diradical character, a striking sky-blue color and near-infrared (NIR) emission (in solution).
View Article and Find Full Text PDFCeO is a popular material in heterogeneous catalysis, molecular sensors, and electronics and owes many of its special properties to the redox activity of Ce, present as both Ce and Ce. However, the reduction of CeO with H (thought to occur through proton-electron transfer (PET) giving Ce and new OH bonds) is poorly understood due to the high reduction temperatures necessary and the ill-defined nature of the hydrogen atom sources typically used. We have previously shown that transition-metal hydrides with weak M-H bonds react with reducible metal oxides at room temperature by PET.
View Article and Find Full Text PDF