Imiquimod (IMQ; brand name Aldara®) is a registered topical agent that has been proven to induce local inflammation via the Toll-like receptor (TLR)7 pathway. The purpose of this study was to characterize TLR7-mediated inflammation following 7 days (168 h) of topical IMQ exposure in healthy volunteers, and to compare the effects of short exposure (48 h-72 h) with prolonged exposure (120 h-168 h). IMQ (100mg) was applied under occlusion to 5 different tape-stripped treatment sites on the back of 10 healthy participants for a maximum of 7 consecutive days.
View Article and Find Full Text PDFAt the core of molecular biology lies the intricate interplay between sequence, structure, and function. Single-molecule techniques provide in-depth dynamic insights into structure and function, but laborious assays impede functional screening of large sequence libraries. We introduce high-throughput Single-molecule Parallel Analysis for Rapid eXploration of Sequence space (SPARXS), integrating single-molecule fluorescence with next-generation sequencing.
View Article and Find Full Text PDFWhole-heart 4D-flow MRI is a valuable tool for advanced visualization and quantification of blood flow in cardiovascular imaging. Despite advantages over 2D-phase-contrast flow, clinical implementation remains only partially exploited due to many hurdles in all steps, from image acquisition, reconstruction, postprocessing and analysis, clinical embedment, reporting, legislation, and regulation to data storage. The intent of this manuscript was 1) to evaluate the extent of clinical implementation of whole-heart 4D-flow MRI, 2) to identify hurdles hampering clinical implementation, and 3) to reach consensus on requirements for clinical implementation of whole-heart 4D-flow MRI.
View Article and Find Full Text PDFGenomes carry the genetic blueprint of all living organisms. Their organization requires strong condensation as well as carefully regulated accessibility to specific genes for proper functioning of their hosts. The study of the structure and dynamics of the proteins that organize the genome has benefited tremendously from the development of single-molecule force spectroscopy techniques that allow for real-time, nanometer accuracy measurements of the compaction of DNA and manipulation with pico-Newton scale forces.
View Article and Find Full Text PDF