Publications by authors named "J Zwanziger"

We report the structure and charge transport properties of a novel solid-state proton conductor obtained by acid-base chemistry via proton transfer from 12-tungstophosphoric acid to imidazole. The resulting material (henceforth named ImidWP) is a solid salt hydrate that, at room temperature, includes four water molecules per structural unit. To our knowledge, this is the first attempt to tune the properties of a heteropolyacid-based solid-state proton conductor by means of a mixture of water and imidazole, interpolating between water-based and ionic liquid-based proton conductors of high thermal and electrochemical stability.

View Article and Find Full Text PDF

Recent density-functional theory (DFT) calculations raised the possibility that diamond could be degenerate with graphite at very low temperatures. Through high-accuracy calorimetric experiments closing gaps in available data, we reinvestigate the relative thermodynamic stability of diamond and graphite. For T<400 K, graphite is always more stable than diamond at ambient pressure.

View Article and Find Full Text PDF

abinit is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It implements density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and Bethe-Salpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the "temperature-dependent effective potential" approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic materials, although nanostructures and molecules can be treated with the supercell technique.

View Article and Find Full Text PDF

In the present work, our aim is to decipher the cationic ordering in the octahedral and tetrahedral sheets of two Al-rich synthetic materials, namely, phlogopites of nominal composition K(Mg Al )[Al Si O ](OH) F and lepidolites in the system trilithionite-polylithionite with composition K (Li Al )[Al Si O ](OH) F , by directly probing the aluminium distribution through Al and O magic-angle spinning, multiple-quantum magic-angle spinning, and Al- Al double-quantum single-quantum nuclear magnetic resonance (NMR) experiments. Notably, Al- Al double-quantum single-quantum magic-angle spinning NMR spectra, recorded at 9.34 and/or 20.

View Article and Find Full Text PDF

In quantum materials, macroscopic behavior is governed in nontrivial ways by quantum phenomena. This is usually achieved by exquisite control over atomic positions in crystalline solids. Here, it is demonstrated that the use of disordered glassy materials provides unique opportunities to tailor quantum material properties.

View Article and Find Full Text PDF