Publications by authors named "J Zeisler"

Background: Targeted radionuclide therapy is established as a highly effective strategy for the treatment of metastatic tumors; however, the co-development of suitable imaging companions to therapy remains significant challenge. Theranostic isotopes of terbium (Tb, Tb, Tb, Tb) have the potential to provide chemically identical radionuclidic pairs, which collectively encompass all modes of nuclear decay relevant to nuclear medicine. Herein, we report the first radiochemistry and preclinical studies involving Tb- and Tb-labeled crown-αMSH, a small peptide-based bioconjugate suitable for targeting melanoma.

View Article and Find Full Text PDF

With peptides increasingly favored as drugs, natural product motifs, namely the tryptathionine staple, found in amatoxins and phallotoxins, and the 2,2'-bis-indole found in staurosporine represent unexplored staples for unnatural peptide macrocycles. We disclose the efficient condensation of a 5-hydroxypyrroloindoline with either a cysteine-thiol or a tryptophan-indole to form a tryptathionine or 2-2'-bis-indole staple. Judicious use of protecting groups provides for chemoselective stapling using α-MSH, which provides a basis for investigating both chemoselectivity and affinity.

View Article and Find Full Text PDF

Fibroblast activation protein α (FAP-α) is a cell-surface protein overexpressed on cancer-associated fibroblasts that constitute a substantial component of tumor stroma and drive tumorigenesis. FAP is minimally expressed by most healthy tissues, including normal fibroblasts. This makes it a promising pan-cancer diagnostic and therapeutic target.

View Article and Find Full Text PDF

Compared to quinoline-based fibroblast activation protein (FAP)-targeted radiotracers, pyridine-based FAP-targeted tracers are expected to have faster pharmacokinetics due to their smaller molecular size and higher hydrophilicity, which we hypothesize would improve the tumor-to-background image contrast. We aim to develop Ga-labeled pyridine-based FAP-targeted tracers for cancer imaging with positron emission tomography (PET), and compare their imaging potential with the clinically validated [Ga]Ga-FAPI-04. Two DOTA-conjugated pyridine-based AV02053 and AV02070 were synthesized through multi-step organic synthesis.

View Article and Find Full Text PDF

With overexpression in various cancers, the gastrin-releasing peptide receptor (GRPR) is a promising target for cancer imaging and therapy. However, the high pancreas uptake of reported GRPR-targeting radioligands limits their clinical application. Our goal was to develop Ga-labeled agonist tracers for detecting GRPR-expressing tumors with positron emission tomography (PET), and compare them with the clinically validated agonist PET tracer, [Ga]Ga-AMBA.

View Article and Find Full Text PDF