Publications by authors named "J Zecevic"

Maximizing the utilization of noble metals is crucial for applications such as catalysis. We found that the minimum loading of platinum for optimal performance in the hydroconversion of -alkanes for industrially relevant bifunctional catalysts could be reduced by a factor of 10 or more through the rational arranging of functional sites at the nanoscale. Intentionally depositing traces of platinum nanoparticles on the alumina binder or the outer surface of zeolite crystals, instead of inside the zeolite crystals, enhanced isomer selectivity without compromising activity.

View Article and Find Full Text PDF

The preparation of zeolite-based bifunctional catalysts with low noble metal loadings while maintaining optimal performance has been studied. We have deposited 0.03 to 1.

View Article and Find Full Text PDF

In this study, Pt nanoparticles on zeolite/γ-AlO composites (50/50 wt) were located either the zeolite or the γ-AlO binder, hereby varying the average distance (intimacy) between zeolite acid sites and metal sites from "closest" to "nanoscale". The catalytic performance of these catalysts was compared to physical mixtures of zeolite and Pt/γ-AlO powders, which provide a "microscale" distance between sites. Several beneficial effects on catalytic activity and selectivity for -heptane hydroisomerization were observed when Pt nanoparticles are located on the γ-AlO binder in nanoscale proximity with zeolite acid sites, as opposed to Pt nanoparticles located inside zeolite crystals.

View Article and Find Full Text PDF

Using model catalysts with well-defined particle sizes and morphologies to elucidate questions regarding catalytic activity and stability has gained more interest, particularly utilizing colloidally prepared metal(oxide) particles. Here, colloidally synthesized iron oxide nanoparticles (Fe O -NPs, size ∼7 nm) on either a titania (Fe O /TiO) or a silica (Fe O /SiO) support were studied. These model catalyst systems showed excellent activity in the Fischer-Tropsch to olefin (FTO) reaction at high pressure.

View Article and Find Full Text PDF

Fluids responding to magnetic fields (ferrofluids) offer a scene with no equivalent in nature to explore long-range magnetic dipole interactions. Here, we studied the very original class of binary ferrofluids, embedding soft and hard ferrimagnetic nanoparticles. We used a combination of X-ray magnetic spectroscopy measurements supported by multi-scale experimental techniques and Monte-Carlo simulations to unveil the origin of the emergent macroscopic magnetic properties of the binary mixture.

View Article and Find Full Text PDF