High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFLow-frequency mutations provide valuable insights in various fields, including drug resistance identification, cancer and infectious disease research. One promising strategy to enhance the sensitivity and specificity of mutation detection is the incorporation of unique molecular identifiers (UMIs) during polymerase chain reaction (PCR) amplification and before deep sequencing. However, conventional methods for UMI incorporation often necessitate multiple labor-intensive steps.
View Article and Find Full Text PDFObjective: The Supported Employment Demonstration (SED), a large, multisite randomized controlled trial, provided evidence-based supported employment to help individuals recently denied Social Security disability benefits for reason of mental illness to gain competitive employment and avoid disability. Monthly, client-level measurement of participation in individual placement and support permitted the first detailed exploration of potential ethnoracial disparities in the IPS participation process, from enrollment to end of follow-along job supports, in a vulnerable population with ready access to the intervention.
Method: Monthly participation data in a subsample of enrollees randomized to receive supported employment enabled decomposition of IPS service participation into take-up, effectiveness, and follow-along support phases, yielding times to participation duration milestones, job start, and end of follow-along supports for 614 non-Hispanic White, non-Hispanic Black, and Hispanic SED enrollees.
Identifying pathogens, resistance-conferring mutations, and strain types through targeted amplicon sequencing is an important tool. However, due to the limitations of short read sequencing, many applications require the division of limited clinical samples. Here, we present stilPCR (single-tube Illumina long read PCR), which allows the generation of hemi-nested amplicons in a single tube, with Illumina indexes and adapters, effectively increasing the Illumina read length without increasing the input requirements of reagents or sample.
View Article and Find Full Text PDFA search for the exclusive hadronic decays W^{±}→π^{±}γ, W^{±}→K^{±}γ, and W^{±}→ρ^{±}γ is performed using up to 140 fb^{-1} of proton-proton collisions recorded with the ATLAS detector at a center-of-mass energy of sqrt[s]=13 TeV. If observed, these rare processes would provide a unique test bench for the quantum chromodynamics factorization formalism used to calculate cross sections at colliders. Additionally, at future colliders, these decays could offer a new way to measure the W boson mass through fully reconstructed decay products.
View Article and Find Full Text PDF