Publications by authors named "J Yeong"

Gastric cancer (GC) is a major cause of global cancer mortality with high levels of heterogeneity. To explore geospatial interactions in tumor ecosystems, we integrated 2,138 spatial transcriptomic regions-of-interest (ROIs) with 152,423 single-cell expression profiles across 226 GC samples from 121 patients. We observed pervasive expression-based intratumor heterogeneity, recapitulating tumor progression through spatially localized and functionally ordered subgroups associated with specific immune microenvironments, checkpoint profiles, and genetic drivers such as SOX9.

View Article and Find Full Text PDF

Inflammasome is linked to many inflammatory diseases, including COVID-19 and autoimmune liver diseases. While severe COVID-19 was reported to exacerbate liver failure, we report a fatal acute-on-chronic liver failure (ACLF) in a stable primary biliary cholangitis-autoimmune hepatitis overlap syndrome patient triggered by a mild COVID-19 infection. Postmortem liver biopsy showed sparse SARS-CoV-2-infected macrophages with extensive ASC (apoptosis-associated speck-like protein containing a CARD) speck-positive hepatocytes, correlating with elevated circulating ASC specks and inflammatory cytokines, and depleted blood monocyte subsets, indicating widespread liver inflammasome activation.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) is currently the standard of care for metastatic renal cell carcinoma (RCC), but treatment responses remain unpredictable. Aristolochic acid (AA), a prevalent supplement additive in Taiwan, has been associated with RCC and induces signature mutations, although its effect on the tumor-immune microenvironment (TIME) is unclear. We aimed to investigate the immune profile of AA-positive RCCs and explore its potential role as a susceptible candidate for ICB.

View Article and Find Full Text PDF

Background: Computed tomography (CT) is a non-invasive diagnostic imaging modality which can be used to study the anatomy and morphology of live or deceased animals in-situ. In cetaceans, existing CT anatomy studies mostly focused on the head and thoracic regions. Using postmortem CT (PMCT) scans of Indo-Pacific finless porpoises (Neophocaena phocaenoides), this study describes the cross-sectional imaging anatomy of the cetacean abdomino-pelvic organs for the first time.

View Article and Find Full Text PDF