Publications by authors named "J Y Pascal"

Non-covalent interactions of poly(ADP-ribose) (PAR) facilitate condensate formation, yet the impact of these interactions on condensate properties remains unclear. Here, we demonstrate that PAR-mediated interactions through PARP13, specifically the PARP13.2 isoform, are essential for modulating the dynamics of stress granules-a class of cytoplasmic condensates that form upon stress, including types frequently observed in cancers.

View Article and Find Full Text PDF

Cellular target engagement technologies enable quantification of intracellular drug binding; however, simultaneous assessment of drug-associated phenotypes has proven challenging. Here, we present cellular target engagement by accumulation of mutant as a platform that can concomitantly evaluate drug-target interactions and phenotypic responses using conditionally stabilized drug biosensors. We observe that drug-responsive proteotypes are prevalent among reported mutants of known drug targets.

View Article and Find Full Text PDF

PARP enzymes transfer ADP-ribose from NAD onto proteins as a covalent modification that regulates multiple aspects of cell biology. Here, we identify an undiscovered catalytic activity for human PARP1: de novo generation of free PAR molecules that are not attached to proteins. Free PAR production arises when a molecule of NAD or ADP-ribose docks in the PARP1 acceptor site and attaches to an NAD molecule bound to the donor site, releasing nicotinamide and initiating ADP-ribose chains that emanate from NAD/ADP-ribose rather than protein.

View Article and Find Full Text PDF

PARP1 and PARP2 recognize DNA breaks immediately upon their formation, generate a burst of local PARylation to signal their location, and are co-targeted by all current FDA-approved forms of PARP inhibitors (PARPi) used in the cancer clinic. Recent evidence indicates that the same PARPi molecules impact PARP2 differently from PARP1, raising the possibility that allosteric activation may also differ. We find that unlike for PARP1, destabilization of the autoinhibitory domain of PARP2 is insufficient for DNA damage-induced catalytic activation.

View Article and Find Full Text PDF

Catalytic poly(ADP-ribose) production by PARP1 is allosterically activated through interaction with DNA breaks, and PARP inhibitor compounds have the potential to influence PARP1 allostery in addition to preventing catalytic activity. Using the benzimidazole-4-carboxamide pharmacophore present in the first generation PARP1 inhibitor veliparib, a series of 11 derivatives was designed, synthesized, and evaluated as allosteric PARP1 inhibitors, with the premise that bulky substituents would engage the regulatory helical domain (HD) and thereby promote PARP1 retention on DNA breaks. We found that core scaffold modifications could indeed increase PARP1 affinity for DNA; however, the bulk of the modification alone was insufficient to trigger PARP1 allosteric retention on DNA breaks.

View Article and Find Full Text PDF