Materials (Basel)
December 2024
This paper studies the thermomechanical low-velocity impact behaviors of geometrically imperfect nanoplatelet-reinforced composite (GRC) beams considering the von Kármán nonlinear geometric relationship. The graphene nanoplatelets (GPLs) are assumed to have a functionally graded (FG) distribution in the matrix beam along its thickness, following the X-pattern. The Halpin-Tsai model and the rule of mixture are employed to predict the effective Young modulus and other material properties.
View Article and Find Full Text PDFIntroduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.
Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.
Background: Knee osteoarthritis (KOA) is a degenerative joint disease characterized by synovial inflammation and fibrosis. Gentiopicroside (GPS), one of the main active ingredients of Gentiana macrophylla, is widely used in anti-inflammatory and anti-fibrotic therapies. However, the exact mechanism by which GPS treats synovial inflammation and fibrosis in KOA remains unclear.
View Article and Find Full Text PDF