This study evaluated the growth performance of and microalgae cultivated in diluted liquid digestate supplemented with CO, comparing their efficiency to that of a conventional synthetic media. The presence of an initial concentration of ammonium of 125 mg N-NH .L combined with the continuous injection of 1% v/v CO enhanced the optimal growth responses and bioremediation potential for both strains in 200-mL cultures.
View Article and Find Full Text PDFFor a long time, marine macroalgae (seaweeds) have been used to produce commercial biostimulants in order to ensure both productivity and quality of agricultural crops under abiotic stress. With similar biological properties, microalgae have slowly attracted the scientific community and the biostimulant industry, in particular because of their ability to be cultivated on non-arable lands with high biomass productivity all year long. Moreover, the recent strategies of culturing these photosynthetic microorganisms using wastewater and CO opens the possibility to produce large quantity of biomass at moderate costs while integrating local and circular economy approaches.
View Article and Find Full Text PDFThe following study investigates the possibility of growing the Spirulina platensis (S. platensis) cyanobacteria on two agro-industrial anaerobic digestion (AD) digestates diluted with geothermal water. The two digestates (FAWD: Food and Agricultural Wastes Digestate and CDD: Cheese Diary Digestate) were selected based on their different chemical characteristics, attributed to the type of feedstock and the operating conditions used during the AD process.
View Article and Find Full Text PDFCellulosic ethanol could play a major role in the upcoming circular-economy once the process complexity, low carbohydrate extraction yields and high costs are resolved. To this purpose, different steam-treatment severity factors were employed on whole sweet sorghum biomass, followed by the delignification and hydrolysis of resulted lignocellulose fibers. A modified ASTM International (American Society for Testing and Material) standard cellulose hydrolysis approach as well as a newly developed SACH (Sulfuric Acid Cellulose Hydrolysis) process were used, recovering up to 24.
View Article and Find Full Text PDFBiocomposites has gained increasing attention in recent years. The environmental impacts of end-of-life (EoL) treatments of those emerging materials should be evaluated before they are produced and installed commercially, to ensure a minimal impact of these products all along their life cycle. Life cycle assessment (LCA) was carried out to evaluate environmental impacts of the EoL treatments of wood flour (WF) reinforced polypropylene (PP/WF) and flax fibers reinforced polylactic acid (PLA/Fl).
View Article and Find Full Text PDF