Efficacious anticancer therapies for targeting plasma membrane receptors with antibody based therapeutics are often contingent on sufficient endocytic delivery of receptor and conjugate to lysosomes. This results in downregulation of receptor activity and, in the case of antibody-drug conjugates (ADCs), intracellular release of a drug payload. The oncogenic receptor HER2 is a priority therapeutic target in breast cancer.
View Article and Find Full Text PDFBreast Cancer Associated gene 2 (BCA2) is an E3 ubiquitin ligase that is over-expressed in >50% of primary breast cancers, and has been shown to increase cell proliferation and invasion. The protein has been linked to alterations in EGFR degradation; however there is some dispute as to its role and influence on the biology of this receptor. Our work aimed to ascertain the role of BCA2 in EGFR endocytosis and down-regulation and to examine its links with breast cancer outcome.
View Article and Find Full Text PDFThe uptake of microfluidics by the wider scientific community has been limited by the fabrication barrier created by the skills and equipment required for the production of traditional microfluidic devices. Here we present simple 3D printed microfluidic devices using an inexpensive and readily accessible printer with commercially available printer materials. We demonstrate that previously reported limitations of transparency and fidelity have been overcome, whilst devices capable of operating at pressures in excess of 2000 kPa illustrate that leakage issues have also been resolved.
View Article and Find Full Text PDFPodophyllotoxin (PT) and its clinically used analogues are known to be powerful antitumour agents. These compounds contain a trans fused strained γ-lactone system, a feature that correlates to the process of epimerisation, whereby the trans γ-lactone system of ring D opens and converts to the more thermodynamically stable cis epimer. Since these cis epimers are known to be either less active or lacking antitumour activity, epimerisation is an undesirable feature from a chemotherapeutic point of view.
View Article and Find Full Text PDFGlycol chitosan nanogels have been widely used in gene, drug, and contrast agent delivery in an effort to improve disease diagnosis and treatment. Herein, we evaluate the internalization mechanisms and intracellular fate of previously described glycol chitosan nanogels decorated with folate to target the folate receptor. Uptake of the folate-decorated nanogel was impaired by free folate, suggesting competitive inhibition and shared internalization mechanisms via the folate receptor.
View Article and Find Full Text PDF