The rapid development of equitably accessible vaccines is paramount in addressing emerging global health challenges. The safety and efficacy of vaccines hinge significantly on their ability to remain stable from manufacturing throughout the supply chain and up to administration. Furthermore, the release of vaccines requires sufficient understanding of the stability profile to allow for expiration dating.
View Article and Find Full Text PDFManufacturing and testing of pharmaceutical products frequently occur in multiple facilities within a company's network. It is of interest to demonstrate equivalence among the alternative testing/manufacturing facilities to ensure product consistency and quality regardless of the facility where it was manufactured/tested. In the Frequentist framework, equivalence testing is well established when comparing two labs or manufacturing facilities; however, when considering more than two labs or production sites, the Frequentist approach may not always offer appropriate or interpretable estimates for demonstrating equivalence among all of them simultaneously.
View Article and Find Full Text PDFIn pharmaceutical manufacturing, especially biologics and vaccines manufacturing, emphasis on speedy process development can lead to inadequate process development, which often results in less robust commercial manufacturing process after launch. Process performance index (Ppk) is a statistical measurement of the ability of a process to produce output within specification limits over a period of time. In biopharmaceutical manufacturing, progression in process development is based on Critical Quality Attributes meeting their specification limits, lacking insight into the process robustness.
View Article and Find Full Text PDFIt is of particular interest for biopharmaceutical companies developing and distributing fragile biomolecules to warrant the stability and activity of their products during long-term storage and shipment. In accordance with quality by design principles, advanced kinetic modeling (AKM) has been successfully used to predict long-term product shelf-life and relies on data from short-term accelerated stability studies that are used to generate Arrhenius-based kinetic models that can, in turn, be exploited for stability forecasts. The AKM methodology was evaluated through a cross-company perspective on stability modeling for key stability indicating attributes of different types of biotherapeutics, vaccines and biomolecules combined in in vitro diagnostic kits.
View Article and Find Full Text PDFStability assessment of pharmaceuticals in specific storage and shipment conditions is a key requirement to ensure that safe and efficacious products are administered to patients. This is particularly relevant for vaccines, with numerous vaccines strictly requiring cold storage to remain stable. When stability evaluation is exclusively based on real-time data, it may represent a bottleneck for rapid and effective vaccine access.
View Article and Find Full Text PDF