The organization of the eukaryote nucleus into functional compartments arises by self-organization both through specific protein-protein and protein-DNA interactions and non-specific interactions that lead to entropic effects, such as e.g. depletion attraction.
View Article and Find Full Text PDFThe order Picornavirales includes several plant viruses that are currently classified into the families Comoviridae (genera Comovirus, Fabavirus and Nepovirus) and Sequiviridae (genera Sequivirus and Waikavirus) and into the unassigned genera Cheravirus and Sadwavirus. These viruses share properties in common with other picornavirales (particle structure, positive-strand RNA genome with a polyprotein expression strategy, a common replication block including type III helicase, a 3C-like cysteine proteinase and type I RNA-dependent RNA polymerase). However, they also share unique properties that distinguish them from other picornavirales.
View Article and Find Full Text PDFTomato spotted wilt virus (TSWV) particles are spherical and enveloped, an uncommon feature among plant infecting viruses. Previous studies have shown that virus particle formation involves the enwrapment of ribonucleoproteins with viral glycoprotein containing Golgi stacks. In this study, the localization and behaviour of the viral glycoproteins Gn and Gc were analysed, upon transient expression in plant protoplasts.
View Article and Find Full Text PDFThe genus Nepovirus (family Comoviridae) was known both for a good level of homogeneity and for the presence of atypical members. In particular, the atypical members of the genus differed by the number of capsid protein (CP) subunits. While typical nepoviruses have a single CP subunit with three structural domains, atypical nepoviruses have either three small CP subunits, probably corresponding to the three individual domains, or a large and a small subunit, probably containing two and one structural domains, respectively.
View Article and Find Full Text PDFCowpea mosaic virus (CPMV) moves from cell to cell by transporting virus particles via tubules formed through plasmodesmata by the movement protein (MP). On the surface of protoplasts, a fusion between the MP and the green fluorescent protein forms similar tubules and peripheral punctate spots. Here it was shown by time-lapse microscopy that tubules can grow out from a subset of these peripheral punctate spots, which are dynamic structures that seem anchored to the plasma membrane.
View Article and Find Full Text PDF