Despite the fundamental role of bacterial strain variation in gut microbiota function, the number of unique strains of a species that can stably colonize the human intestine is still unknown for almost all species. Here we determine the strain richness (SR) of common gut species using thousands of sequenced bacterial isolates with paired metagenomes. We show that SR varies across species, is transferable by faecal microbiota transplantation, and is uniquely low in the gut compared with soil and lake environments.
View Article and Find Full Text PDFObjective: IBD is characterised by dysbiosis, but it remains unclear to what extent dysbiosis develops in unaffected at-risk individuals. To address this, we investigated age-related patterns of faecal and serum markers of dysbiosis in high-risk multiplex IBD families (two or more affected first-degree relatives).
Design: Faecal and serum samples were collected from multiplex IBD and control families (95 IBD, 292 unaffected, 51 controls).
Necrotizing enterocolitis (NEC) is a leading cause of preterm infant morbidity and mortality. Treatment for NEC is limited and non-targeted, which makes new treatment and prevention strategies critical. Host defense peptides (HDPs) are essential components of the innate immune system and have multifactorial mechanisms in host defense.
View Article and Find Full Text PDFBackground & Aims: Endoscopic assessment of ulcerative colitis (UC) typically reports only the maximum severity observed. Computer vision methods may better quantify mucosal injury detail, which varies among patients.
Methods: Endoscopic video from the UNIFI clinical trial (A Study to Evaluate the Safety and Efficacy of Ustekinumab Induction and Maintenance Therapy in Participants With Moderately to Severely Active Ulcerative Colitis) comparing ustekinumab and placebo for UC were processed in a computer vision analysis that spatially mapped Mayo Endoscopic Score (MES) to generate the Cumulative Disease Score (CDS).
Obesity and metabolic comorbidities are associated with gut permeability. While high-fructose and Western-style diet (WSD) disrupt intestinal barrier function, oral administration of human α-defensin 5 (HD5) and β-defensin 2 (hBD2) is believed to improve intestinal integrity and metabolic disorders. Eighty-four male C57BL/6J mice were fed a WSD or a control diet (CD) ± fructose (F) for 18 weeks.
View Article and Find Full Text PDF