Developments in untargeted nuclear magnetic resonance (NMR) metabolomics enable the profiling of thousands of biological samples. The exploitation of this rich source of information requires a detailed quantification of spectral features. However, the development of a consistent and automatic workflow has been challenging because of extensive signal overlap.
View Article and Find Full Text PDFThe Biological Magnetic Resonance Data Bank (BMRB, https://bmrb.io) is the international open data repository for biomolecular nuclear magnetic resonance (NMR) data. Comprised of both empirical and derived data, BMRB has applications in the study of biomacromolecular structure and dynamics, biomolecular interactions, drug discovery, intrinsically disordered proteins, natural products, biomarkers, and metabolomics.
View Article and Find Full Text PDFThe Biological Magnetic Resonance Data Bank (BMRB) has served the NMR structural biology community for 40 years, and has been instrumental in the development of many widely-used tools. It fosters the reuse of data resources in structural biology by embodying the FAIR data principles (Findable, Accessible, Inter-operable, and Re-usable). NMRbox is less than a decade old, but complements BMRB by providing NMR software and high-performance computing resources, facilitating the reuse of software resources.
View Article and Find Full Text PDFHydrogen bonding between an amide group and the p- cloud of an aromatic ring was first identified in a protein in the 1980s. Subsequent surveys of high-resolution X-ray crystal structures found multiple instances, but their preponderance was determined to be infrequent. Hydrogen atoms participating in a hydrogen bond to the p- cloud of an aromatic ring are expected to experience an upfield chemical shift arising from a shielding ring current shift.
View Article and Find Full Text PDFThe chemical composition of saccharide complexes underlies their biomedical activities as biomarkers for cardiometabolic disease, various types of cancer, and other conditions. However, because these molecules may undergo major structural modifications, distinguishing between compounds of saccharide and non-saccharide origin becomes a challenging computational problem that hinders the aggregation of information about their bioactive moieties. We have developed an algorithm and software package called "Cheminformatics Tool for Probabilistic Identification of Carbohydrates" (CTPIC) that analyzes the covalent structure of a compound to yield a probabilistic measure for distinguishing saccharides and saccharide-derivatives from non-saccharides.
View Article and Find Full Text PDF