Publications by authors named "J Wasicki"

The isothermal crystallization process of felodipine has been investigated using the time-domain Nuclear Magnetic Resonance (NMR) method for amorphous bulk and ground samples. The obtained induction and crystallization times were then used to construct the time-temperature-transformation (TTT) diagram, both above and below the glass transition temperature (T). The Nose temperature was found equal to 363 K.

View Article and Find Full Text PDF

The methoxy analogue of a -stilbene compound - 2,3,3',4'-tetramethoxy--stilbene - was selected to characterize its crystallographic structure, intermolecular interactions and molecular dynamics. The sample was studied using single-crystal X-ray diffraction (XRD), infrared spectroscopy (FT-IR), liquid and solid-state H and C nuclear magnetic resonance (NMR) and quasielastic neutron scattering (QENS). The compound crystallized in the orthorhombic space group.

View Article and Find Full Text PDF

The H nuclear magnetic resonance (NMR) relaxometry method was applied to investigate the physical stability of an active pharmaceutical ingredient (API) and, for the first time, its recrystallization process in an amorphous solid dispersion system (ASD). The ASD of felodipine and polyvinylpyrrolidone (PVP) was prepared using the solvent evaporation method in a mass ratio of 50:50. In the first stage of the study (250 days), the sample was stored at 0% relative humidity (RH).

View Article and Find Full Text PDF

The method of H Nuclear Magnetic Resonance (NMR) relaxometry is applied to investigate the kinetics of the recrystallization of an active pharmaceutical ingredient (felodipine) from the amorphous phase of its physical mixture with a polymer (polyvinylpyrrolidone, PVP). Comparison of the recrystallization results obtained for amorphous felodipine and its mixtures with PVP shows that the recrystallization process of API is faster in the mixtures and depends on the content of water in the system. The free induction decay (FID) for protons that were detected are composed of three components, and the loss of water from PVP strongly influences the part characterized by the longest spin-spin lattice relaxation time.

View Article and Find Full Text PDF

Molecular reorientations were studied in amorphous, partially and fully recrystallized felodipine (calcium channel blocker, a drug from the family of 1',4-dihydropyridine) using a set of experimental methods: high-resolution solid-state nuclear magnetic resonance (NMR), relaxometry NMR and quasielastic neutron scattering (QENS). The results were compared with molecular dynamics in crystalline felodipine previously investigated [A. Pajzderska, K.

View Article and Find Full Text PDF