Rhabdomyosarcoma frequently infiltrates bone marrow and this process involves the stromal-derived factor-1 (SDF-1)-CXCR4 axis. Because leukemia inhibitory factor (LIF), like SDF-1, is secreted by bone marrow stroma and directs the regeneration of skeletal muscles, we examined whether the LIF-LIF receptor (LIF-R) axis affects the biology of rhabdomyosarcoma cells. We found that in rhabdomyosarcoma cells, LIF stimulates the following: (a) phosphorylation of mitogen-activated protein kinase p42/44, AKT, and signal transducers and activators of transcription 3, (b) adhesion and chemotaxis, and (c) increased resistance to cytostatics.
View Article and Find Full Text PDFBackground And Objectives: The NK-like homeobox gene (NKX2-5/CSX) plays a crucial role in cardiac development but is not normally expressed in hematopoietic cells. Here, we describe for the first time a fusion between NKX2-5 and the T-cell receptor delta locus (TRD) resulting in NKX2-5 activation in a case of T-cell acute lymphoblastic leukemia (T-ALL).
Design And Methods: Genomic DNA from a T-ALL patient with an atypical rearrangement, detected by Southern blotting, was analyzed by ligation-mediated polymerase chain reaction (PCR) with TRD-specific primers.
The alpha-chemokine stromal-derived factor (SDF)-1 and the G-protein-coupled seven-span transmembrane receptor CXCR4 axis regulates the trafficking of various cell types. In this review, we present the concept that the SDF-1-CXCR4 axis is a master regulator of trafficking of both normal and cancer stem cells. Supporting this is growing evidence that SDF-1 plays a pivotal role in the regulation of trafficking of normal hematopoietic stem cells (HSCs) and their homing/retention in bone marrow.
View Article and Find Full Text PDFT-cell acute lymphoblastic leukemia (T-ALL) is associated with chromosomal aberrations characterized by juxtaposition of proto-oncogenes to T-cell receptor gene loci (TCR), resulting in the deregulated transcription of these proto-oncogenes. Here, we describe the molecular characterization of a novel chromosomal aberration, inv(14)(q11.2q32.
View Article and Find Full Text PDFWe found that supernatants of leukapheresis products (SLPs) of patients mobilized with granulocyte-colony-stimulating factor (G-CSF) or the various components of SLPs (fibrinogen, fibronectin, soluble vascular cell adhesion molecule-1 [VCAM-1], intercellular adhesion molecule-1 [ICAM-1], and urokinase plasminogen activator receptor [uPAR]) increase the chemotactic responses of hematopoietic stem/progenitor cells (HSPCs) to stromal-derived factor-1 (SDF-1). However, alone they do not chemoattract HSPCs, but they do increase or prime the cells' chemotactic responses to a low or threshold dose of SDF-1. We observed that SLPs increased calcium flux, phosphorylation of mitogen-activated protein kinase (MAPK) p42/44 and AKT, secretion of matrix metalloproteinases, and adhesion to endothelium in CD34+ cells.
View Article and Find Full Text PDF