Publications by authors named "J W Zolg"

Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM-TTM diradicaloid, which exhibits high diradical character, a striking sky-blue color and near-infrared (NIR) emission (in solution).

View Article and Find Full Text PDF

In the diagnostic and the pharmaceutical industry there is a constant need for new diagnostic markers and biomarkers with improved sensitivity and specificity. During the last 5 years, only a few novel diagnostic markers have been introduced into the market. Proteomics technologies are now offering unique chances to identify new candidate markers.

View Article and Find Full Text PDF

Diagnosis of systemic autoimmune diseases is highly complex, and it is becoming increasingly difficult to make assumptions about the functional roles and diagnostic significance of autoantibodies. The latter is mainly due to the fact that results from different assay systems are not interchangeable. A laboratory "gold standard" which helps the clinician to differentiate irrelevant autoimmune phenomena from significant autoimmune diseases at an early stage, is clearly missed.

View Article and Find Full Text PDF

The superoxide dismutase gene has been identified as a target in screening for the presence of mycobacteria on the genus level and differentiating relevant mycobacterial species from one another by PCR. Consensus primers deduced from known superoxide dismutase gene sequences allowed the amplification of DNAs from a variety of bacteria, fungi, and protozoa. Selected amplicons from Actinomyces viscosus, Corynebacterium diphtheriae, Corynebacterium pseudodiphtheriticum, Mycobacterium avium, M.

View Article and Find Full Text PDF

Plasmodium falciparum DNA is detected with an assay modeled according to the reverse target capture assay described by Morrissey et al. [19] for the detection of Listeria cells. A poly(A)-tailed oligonucleotide (pWZ34), derived from the partial sequence of a 4-kb repetitive unit of P.

View Article and Find Full Text PDF