Publications by authors named "J W Verlander"

Article Synopsis
  • * Knocking out Rac1 in intercalated cells lowered pendrin levels when these cells were treated with angiotensin II, suggesting Rac1 is important for this increase.
  • * The research indicates Rac1 may regulate pendrin by involving NADPH oxidase, affecting oxidative stress and ultimately blood pressure responses in the kidneys treated with angiotensin II.
View Article and Find Full Text PDF

The intercalated cell Cl/HCO exchanger, pendrin, modulates ENaC subunit abundance and function. Whether ENaC modulates pendrin abundance and function is however unknown. Because αENaC mRNA has been detected in pendrin-positive intercalated cells, we hypothesized that ENaC, or more specifically the αENaC subunit, modulates intercalated cell function.

View Article and Find Full Text PDF

The renal response to acid-base disturbances involves phenotypic and remodeling changes in the collecting duct. This study examines whether the proximal tubule controls these responses. We examined mice with genetic deletion of proteins present only in the proximal tubule, either the A variant or both A and B variants of isoform 1 of the electrogenic Na-bicarbonate cotransporter (NBCe1).

View Article and Find Full Text PDF
Article Synopsis
  • Pendrin is a protein involved in regulating chloride and potassium levels in the kidneys, and this study investigates its role in potassium homeostasis using pendrin knockout (KO) mice.* -
  • The research found that when pendrin KO mice were put on a potassium-restricted diet, they developed low potassium levels (hypokalemia) due to increased potassium excretion, which was influenced by the activity of the epithelial sodium channel (ENaC).* -
  • While downregulating ENaC helped pendrin KO mice retain potassium, it also led to complications like reduced blood pressure and increased signs of dehydration, indicating a trade-off between potassium conservation and overall fluid balance in the body.*
View Article and Find Full Text PDF

The molecular mechanisms regulating ammonia metabolism are fundamental to acid-base homeostasis. Deletion of the A splice variant of Na-bicarbonate cotransporter, electrogenic, isoform 1 (NBCe1-A) partially blocks the effect of acidosis to increase urinary ammonia excretion, and this appears to involve the dysregulated expression of ammoniagenic enzymes in the proximal tubule (PT) in the cortex but not in the outer medulla (OM). A second NBCe1 splice variant, NBCe1-B, is present throughout the PT, including the OM, where NBCe1-A is not present.

View Article and Find Full Text PDF