Publications by authors named "J W Van Lent"

Inherited peripheral neuropathies (IPNs) are a group of diseases associated with mutations in various genes with fundamental roles in the development and function of peripheral nerves. Over the past 10 years, significant advances in identifying molecular disease mechanisms underlying axonal and myelin degeneration, acquired from cellular biology studies and transgenic fly and rodent models, have facilitated the development of promising treatment strategies. However, no clinical treatment has emerged to date.

View Article and Find Full Text PDF

When we think about cancer, the link to development might not immediately spring to mind. Yet, many foundational concepts in cancer biology trace their roots back to developmental processes. Several defining traits of cancer were indeed initially observed and studied within developing embryos.

View Article and Find Full Text PDF

The Alaska Tribal Health System is working to increase colorectal cancer (CRC) screening among Alaska Native people, who experience the highest CRC rates in the world. This study examined CRC screening provider- and system-level barriers and facilitators from the perspective of healthcare providers serving Alaska Native people in rural/remote communities. A total of 28 provider (physicians, advanced practice, and Community Health Aides/Practitioners) interviews were held from 1 February to 30 November 2021.

View Article and Find Full Text PDF
Article Synopsis
  • Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSAN) are rare disorders affecting sensory and autonomic neurons, making them hard to study due to limited data.
  • A large international study identified 80 new pathogenic variants in 73 families across known CIP/HSAN-related genes, expanding knowledge on these diseases.
  • Advanced methodologies like in silico predictions and metabolic tests improved variant classification, crucial for guiding future gene-specific treatments in clinical trials.
View Article and Find Full Text PDF

Advancements in lab-on-a-chip technologies have revolutionized the single-cell analysis field. However, an accessible platform for in-depth screening and specific retrieval of single cells, which moreover enables studying diverse cell types and performing various downstream analyses, is still lacking. As a solution, FLUIDOT is introduced, a versatile microfluidic platform incorporating customizable microwells, optical tweezers and an interchangeable cell-retrieval system.

View Article and Find Full Text PDF