Publications by authors named "J W Stamm"

The formation of following the double ionization of small organic compounds via a roaming mechanism, which involves the generation of H and subsequent proton abstraction, has recently garnered significant attention. Nonetheless, a cohesive model explaining trends in the yield of characterizing these unimolecular reactions is yet to be established. We report yield and femtosecond time-resolved measurements following the strong-field double ionization of CHX molecules, where X = OD, Cl, NCS, CN, SCN, and I.

View Article and Find Full Text PDF

Gene model for the ortholog of Myc ( ) in the May 2011 (Agencourt dana_caf1/DanaCAF1) Genome Assembly (GenBank Accession: GCA_000005115.1 ) of . This ortholog was characterized as part of a developing dataset to study the evolution of the Insulin/insulin-like growth factor signaling pathway (IIS) across the genus using the Genomics Education Partnership gene annotation protocol for Course-based Undergraduate Research Experiences.

View Article and Find Full Text PDF

Pulse shaping has long been employed for tailoring femtosecond laser pulses to study and control the fragmentation of polyatomic molecules. In many cases, a physical explanation connecting the properties of the field to the observed control is difficult to ascertain. We utilized 80 bit binary spectral phase functions to parametrize and map the search space, gaining insight into which pulse parameters most impact the ion yield and fragmentation pattern for the relatively large triethylamine [N(CH)] molecule.

View Article and Find Full Text PDF
Article Synopsis
  • A gene model for the ortholog of Thor was developed in the May 2011 Genome Assembly (DyakCAF1) of the species in question.
  • This ortholog is part of a broader dataset aimed at studying the evolution of the Insulin/insulin-like growth factor signaling pathway (IIS) in the genus.
  • The research utilized the Genomics Education Partnership gene annotation protocol to enhance undergraduate research experiences.
View Article and Find Full Text PDF

Electron-initiated chemistry with chemically relevant electron energies (10-200 eV) is at the heart of several high-energy processes and phenomena. To probe these dissociation and fragmentation reactions with femtosecond resolution requires the use of femtosecond lasers to induce ionization of the polyatomic molecules via electron rescattering. Here, we combine noncommensurate fields with intensity-difference spectra using methanol as a model system.

View Article and Find Full Text PDF