An Addendum to the AAPM's TG-51 protocol for the determination of absorbed dose to water is presented for electron beams with energies between 4 MeV and 22 MeV ( ). This updated formalism allows simplified calibration procedures, including the use of calibrated cylindrical ionization chambers in all electron beams without the use of a gradient correction. New data are provided for electron beams based on Monte Carlo simulations.
View Article and Find Full Text PDFPurpose: This study quantifies the variation in dose-volume histogram (DVH) and normal tissue complication probability (NTCP) metrics for head-and-neck (HN) cancer patients when alternative organ-at-risk (OAR) delineations are used for treatment planning and for treatment plan evaluation. We particularly focus on the effects of daily patient positioning/setup variations (SV) in relation to treatment technique and delineation variability.
Materials And Methods: We generated two-arc VMAT, 5-beam IMRT, and 9-beam IMRT treatment plans for a cohort of 209 HN patients.
To establish an open framework for developing plan optimization models for knowledge-based planning (KBP).Our framework includes radiotherapy treatment data (i.e.
View Article and Find Full Text PDFPractical guidelines that are not explicit in the TG-51 protocol and its Addendum for photon beam dosimetry are presented for the implementation of the TG-51 protocol for reference dosimetry of external high-energy photon and electron beams. These guidelines pertain to: (i) measurement of depth-ionization curves required to obtain beam quality specifiers for the selection of beam quality conversion factors, (ii) considerations for the dosimetry system and specifications of a reference-class ionization chamber, (iii) commissioning a dosimetry system and frequency of measurements, (iv) positioning/aligning the water tank and ionization chamber for depth ionization and reference dose measurements, (v) requirements for ancillary equipment needed to measure charge (triaxial cables and electrometers) and to correct for environmental conditions, and (vi) translation from dose at the reference depth to that at the depth required by the treatment planning system. Procedures are identified to achieve the most accurate results (errors up to 8% have been observed) and, where applicable, a commonly used simplified procedure is described and the impact on reference dosimetry measurements is discussed so that the medical physicist can be informed on where to allocate resources.
View Article and Find Full Text PDFPurpose: To reduce the likelihood of errors in organ delineations used for radiotherapy treatment planning, a knowledge-based quality control (KBQC) system, which discriminates between valid and anomalous delineations is developed.
Method And Materials: The KBQC is comprised of a group-wise inference system and anomaly detection modules trained using historical priors from 296 locally advanced lung and prostate cancer patient computational tomographies (CTs). The inference system discriminates different organs based on shape, relational, and intensity features.