Publications by authors named "J W SHRINER"

The Galactic 1.809-MeV γ-ray signature from the β decay of ^{26g}Al is a dominant target of γ-ray astronomy, of which a significant component is understood to originate from massive stars. The ^{26g}Al(p,γ)^{27}Si reaction is a major destruction pathway for ^{26g}Al at stellar temperatures, but the reaction rate is poorly constrained due to uncertainties in the strengths of low-lying resonances in ^{27}Si.

View Article and Find Full Text PDF

Recent calculations suggest that the rate of neutron capture by (130)Sn has a significant impact on late-time nucleosynthesis in the r process. Direct capture into low-lying bound states is expected to be significant in neutron capture near the N=82 closed shell, so r-process reaction rates may be strongly impacted by the properties of neutron single particle states in this region. In order to investigate these properties, the (d,p) reaction has been studied in inverse kinematics using a 630 MeV beam of (130)Sn (4.

View Article and Find Full Text PDF

The best examples of halo nuclei, exotic systems with a diffuse nuclear cloud surrounding a tightly bound core, are found in the light, neutron-rich region, where the halo neutrons experience only weak binding and a weak, or no, potential barrier. Modern direct-reaction measurement techniques provide powerful probes of the structure of exotic nuclei. Despite more than four decades of these studies on the benchmark one-neutron halo nucleus 11Be, the spectroscopic factors for the two bound states remain poorly constrained.

View Article and Find Full Text PDF

Atomic nuclei have a shell structure in which nuclei with 'magic numbers' of neutrons and protons are analogous to the noble gases in atomic physics. Only ten nuclei with the standard magic numbers of both neutrons and protons have so far been observed. The nuclear shell model is founded on the precept that neutrons and protons can move as independent particles in orbitals with discrete quantum numbers, subject to a mean field generated by all the other nucleons.

View Article and Find Full Text PDF

The rate of the (17)F(p,gamma)(18)Ne reaction is important in various astrophysical events. A previous (17)F(p,p)(17)F measurement identified a 3;{+} state providing the strongest resonance contribution, but the resonance strength was unknown. We have directly measured the (17)F(p,gamma)(18)Ne reaction using a mixed beam of (17)F and (17)O at ORNL.

View Article and Find Full Text PDF