There is a complex interplay between viral infection and host innate immune response regarding disease severity and outcomes. Neutrophil hyperactivation, including excessive release of neutrophil extracellular traps (NETs), is linked to exacerbated disease in acute COVID-19, notably in hospitalized patients. Delineating protective versus detrimental neutrophil responses is essential to developing targeted COVID-19 therapies and relies on high-quality translational animal models.
View Article and Find Full Text PDFIntracellular delivery of biological cargos, which would yield new research tools and novel therapeutics, remains an active area of research. A convenient and potentially general approach involves the conjugation of a cell-penetrating peptide to a cargo of interest. However, linear CPPs lack sufficient cytosolic entry efficiency and metabolic stability, while previous backbone cyclized CPPs have several drawbacks including the necessity for chemical synthesis and posttranslational conjugation to peptide/protein cargos and epimerization during cyclization.
View Article and Find Full Text PDFCell-penetrating peptides (CPPs) enter the cell by two different mechanisms-endocytosis followed by endosomal escape and direct translocation at the plasma membrane. The mechanism of direct translocation remains unresolved. In this work, the direct translocation of nonaarginine (R9) and two cyclic CPPs (CPP12 and CPP17) into Jurkat cells was monitored by time-lapse confocal microscopy.
View Article and Find Full Text PDF