B cells of people with multiple sclerosis (MS) are more responsive to IFN-γ, corresponding to their brain-homing potential. We studied how a coding single nucleotide polymorphism (SNP) in IFNGR2 (rs9808753) co-operates with Epstein-Barr virus (EBV) infection as MS risk factors to affect the IFN-γ signaling pathway in human B cells. In both cell lines and primary cells, EBV infection positively associated with IFN-γ receptor expression and STAT1 phosphorylation.
View Article and Find Full Text PDFChronic lower back pain caused by intervertebral disc degeneration and osteoarthritis (OA) are highly prevalent chronic diseases. Although pain management and surgery can alleviate symptoms, no disease-modifying treatments are available. mRNA delivery could halt inflammation and degeneration and induce regeneration by overexpressing anti-inflammatory cytokines or growth factors involved in cartilage regeneration.
View Article and Find Full Text PDFNew therapies and vaccines based on nucleic acids combined with an efficient nanoparticle delivery vehicle have a broad applicability for different disease indications. An alternative delivery technology for the successfully applied lipid nanoparticles in mRNA SARS-CoV-2 vaccines are nanoparticles composed of biodegradable poly(amido)amine-based polymers with mRNA payload. To show that these polymeric nanoparticles can efficiently deliver influenza hemagglutinin mRNA to target tissues and elicit protective immune responses, a relevant ferret influenza challenge model was used.
View Article and Find Full Text PDFThe anti-CD20 monoclonal antibody ocrelizumab reduces disability progression in primary progressive multiple sclerosis. CD20 is a prototypical B-cell marker; however, subpopulations of CD4 and CD8 T cells in peripheral blood and cerebrospinal fluid also express low levels of CD20 (CD20). Therefore, direct targeting and depletion of these CD20 T-cell subpopulations may contribute to the therapeutic effect of ocrelizumab.
View Article and Find Full Text PDFThe successful use of mRNA vaccines enabled and accelerated the development of several new vaccine candidates and therapeutics based on the delivery of mRNA. In this study, we developed bioreducible poly(amidoamine)-based polymeric nanoparticles (PAA PNPs) for the delivery of mRNA with improved transfection efficiency. The polymers were functionalized with chloroquinoline (Q) moieties for improved endosomal escape and further stabilization of the mRNA-polymer construct.
View Article and Find Full Text PDF