Publications by authors named "J W Kevek"

For centuries, practitioners of origami ('ori', fold; 'kami', paper) and kirigami ('kiru', cut) have fashioned sheets of paper into beautiful and complex three-dimensional structures. Both techniques are scalable, and scientists and engineers are adapting them to different two-dimensional starting materials to create structures from the macro- to the microscale. Here we show that graphene is well suited for kirigami, allowing us to build robust microscale structures with tunable mechanical properties.

View Article and Find Full Text PDF

Random telegraph signals corresponding to activated charge traps were observed with liquid-gated CNT FETs. The high signal-to-noise ratio that we observe demonstrates that single electron charge sensing is possible with CNT FETs in liquids at room temperature. We have characterized the gate-voltage dependence of the random telegraph signals and compared to theoretical predictions.

View Article and Find Full Text PDF

We have performed scanning photocurrent microscopy measurements of field-effect transistors (FETs) made from individual ultraclean suspended carbon nanotubes (CNTs). We investigate the spatial-dependence, polarization-dependence, and gate-dependence of photocurrent and photovoltage in this system. While previous studies of surface-bound CNT FET devices have identified the photovoltaic effect as the primary mechanism of photocurrent generation, our measurements show that photothermoelectric phenomena play a critical role in the optoelectronic properties of suspended CNT FETs.

View Article and Find Full Text PDF

The introduction of chemical inhibitors into living cells at specific times in development is a useful method for investigating the roles of specific proteins or cytoskeletal components in developmental processes. Some embryos, such as those of Caenorhabditis elegans, however, possess a tough eggshell that makes introducing drugs and other molecules into embryonic cells challenging. We have developed a procedure using carbon-reinforced nanopipettes (CRNPs) to deliver molecules into C.

View Article and Find Full Text PDF

Precise vertical stacking and lateral stitching of two-dimensional (2D) materials, such as graphene and hexagonal boron nitride (h-BN), can be used to create ultrathin heterostructures with complex functionalities, but this diversity of behaviors also makes these new materials difficult to characterize. We report a DUV-vis-NIR hyperspectral microscope that provides imaging and spectroscopy at energies of up to 6.2 eV, allowing comprehensive, all-optical mapping of chemical composition in graphene/h-BN lateral heterojunctions and interlayer rotations in twisted bilayer graphene (tBLG).

View Article and Find Full Text PDF