Publications by authors named "J W Jorgenson"

Sophisticated tools such as computer vision techniques in combination with 1D lineout type analyses have been used in automating the analysis of spectral data for high energy density (HED) plasmas. Standardized automation can solve the problems posed by the complexity of HED spectra and the quantity of data. We present a spectroscopic code written for automated and streamlined analysis of spatially resolved x-ray absorption data from the COAX platform on Omega-60.

View Article and Find Full Text PDF

Background: Decades of research have transformed hemophilia from severely limiting children's lives to a manageable disorder compatible with a full, active life, for many in high-income countries. The direction of future research will determine whether exciting developments truly advance health equity for all people with hemophilia (PWH). National Hemophilia Foundation (NHF) and American Thrombosis and Hemostasis Network conducted extensive inclusive all-stakeholder consultations to identify the priorities of people with inherited bleeding disorders and those who care for them.

View Article and Find Full Text PDF

Comprehensive characterization of the lipidome remains a challenge requiring development of new analytical approaches to expand lipid coverage in complex samples. In this work, offline two-dimensional liquid chromatography-mass spectrometry was investigated for lipidomics from human plasma. Hydrophilic interaction liquid chromatography was implemented in the first dimension to fractionate lipid classes.

View Article and Find Full Text PDF

A mix of contaminant mass is a known, performance-limiting factor for laser-driven inertial confinement fusion (ICF). It has also recently been shown that the contaminant mass is not necessarily in thermal equilibrium with the deuterium-tritium plasma [B. M.

View Article and Find Full Text PDF

The ion temperature varying during inertial confinement fusion implosions changes the amount of Doppler broadening of the fusion products, creating subtle changes in the fusion neutron pulse as it moves away from the implosion. A diagnostic design to try to measure these subtle effects is introduced-leveraging the fast time resolution of gas Cherenkov detectors along with a multi-puck array that converts a small amount of the neutron pulse into gamma-rays, one can measure multiple snapshots of the neutron pulse at intermediate distances. Precise measurements of the propagating neutron pulse, specifically the variation in the peak location and the skew, could be used to infer time-evolved ion temperature evolved during peak compression.

View Article and Find Full Text PDF