The current model for the end-Permian terrestrial ecosystem crisis holds that systematic loss exhibited by an abrupt turnover from the Daptocephalus to the Lystrosaurus Assemblage Zone (AZ; Karoo Basin, South Africa) is time equivalent with the marine Permian-Triassic boundary (PTB). The marine event began at 251.941 ± 0.
View Article and Find Full Text PDFThe Newark-Hartford astrochronostratigraphic polarity timescale (APTS) was developed using a theoretically constant 405-kiloyear eccentricity cycle linked to gravitational interactions with Jupiter-Venus as a tuning target and provides a major timing calibration for about 30 million years of Late Triassic and earliest Jurassic time. While the 405-ky cycle is both unimodal and the most metronomic of the major orbital cycles thought to pace Earth's climate in numerical solutions, there has been little empirical confirmation of that behavior, especially back before the limits of orbital solutions at about 50 million years before present. Moreover, the APTS is anchored only at its younger end by U-Pb zircon dates at 201.
View Article and Find Full Text PDFThe potential for increased drought frequency and severity linked to anthropogenic climate change in the semi-arid regions of the southwestern United States (US) is a serious concern. Multi-year droughts during the instrumental period and decadal-length droughts of the past two millennia were shorter and climatically different from the future permanent, 'dust-bowl-like' megadrought conditions, lasting decades to a century, that are predicted as a consequence of warming. So far, it has been unclear whether or not such megadroughts occurred in the southwestern US, and, if so, with what regularity and intensity.
View Article and Find Full Text PDFThe Chuar Group (approximately 1600 m thick) preserves a record of extensional tectonism, ocean-chemistry fluctuations, and biological diversification during the late Neoproterozoic Era. An ash layer from the top of the section has a U-Pb zircon age of 742 +/- 6 Ma. The Chuar Group was deposited at low latitudes during extension on the north-trending Butte fault system and is inferred to record rifting during the breakup of Rodinia.
View Article and Find Full Text PDFLate Miocene (about 8.65 million years ago) mafic intrusions and lava flows along with remagnetized host rocks from Paiute Ridge, southern Nevada, provide a high-quality paleomagnetic record of a geomagnetic field reversal. These rocks yield thermoremanent magnetizations with declinations of 227 degrees to 310 degrees and inclinations of -7 degrees to 49 degrees , defining a reasonably continuous virtual geomagnetic pole path over west-central Pacific longitudes.
View Article and Find Full Text PDF