Publications by authors named "J W Foong"

The enteric nervous system (ENS) consists of an extensive network of neurons and glial cells embedded within the wall of the gastrointestinal (GI) tract. Alterations in neuronal distribution and function are strongly associated with GI dysfunction. Current methods for assessing neuronal distribution suffer from undersampling, partly due to challenges associated with imaging and analyzing large tissue areas, and operator bias due to manual analysis.

View Article and Find Full Text PDF

Intestinal helminth infection triggers a type 2 immune response that promotes a 'weep-and sweep' response characterised by increased mucus secretion and intestinal hypermotility, which function to dislodge the worm from its intestinal habitat. Recent studies have discovered that several other pathogens cause intestinal dysmotility through major alterations to the immune and enteric nervous systems (ENS), and their interactions, within the gastrointestinal tract. However, the involvement of these systems has not been investigated for helminth infections.

View Article and Find Full Text PDF

Background: Early-life events impact maturation of the gut microbiome, enteric nervous system, and gastrointestinal motility. We examined three regions of gastric tissue to determine how maternal separation and gut microbes influence the structure and motor function of specific regions of the neonatal mouse stomach.

Methods: Germ-free and conventionally housed C57BL/6J mouse pups underwent timed maternal separation (TmSep) or nursed uninterrupted (controls) until 14 days of life.

View Article and Find Full Text PDF

International consortia, including ENCODE, Roadmap Epigenomics, Genomics of Gene Regulation and Blueprint Epigenome have made large-scale datasets of open chromatin regions publicly available. While these datasets are extremely useful for studying mechanisms of gene regulation in disease and cell development, they only identify open chromatin regions in individual samples. A uniform comparison of accessibility of the same regulatory sites across multiple samples is necessary to correlate open chromatin accessibility and expression of target genes across matched cell types.

View Article and Find Full Text PDF

The gastrointestinal tract contains the enteric nervous system within its walls and a large community of microbial symbionts (microbiota) in its lumen. In recent years, studies have shown that these two systems that lie adjacent to each other interact. This review will summarize new data using mouse models demonstrating the concurrent development of the enteric nervous system and microbiota during key pre- and postnatal stages.

View Article and Find Full Text PDF