First-generation microsomal triglyceride transfer protein (MTP) inhibitors were designed to inhibit hepatic MTP and provide a novel treatment of dyslipidemia. Effective at lowering low-density lipoprotein-cholesterol (LDL-C), these inhibitors also elevate liver enzymes and induce hepatic steatosis in animals and humans. MTP is highly expressed in the enterocytes, lining the lumen of the jejunum, and is critical in the production of chylomicrons assembled from lipid/cholesterol and their transfer into systemic circulation.
View Article and Find Full Text PDFTranslational biomedical research is often directed to the introduction of a new drug or biologic intended to treat unmet medical need in humans. This unit describes the timing and content of the investigational new drug (IND) application, the primary document required by the U.S.
View Article and Find Full Text PDFDapivirine is a nonnucleoside reverse transcriptase inhibitor being developed as a topical microbicide for the prevention of human immunodeficiency virus infection. The distribution of radioactivity and drug in plasma and in vaginal, cervical, and draining lymph node tissues was investigated after daily application of a vaginal gel formulation of [14C]dapivirine to rhesus macaques. This was preceded by a preliminary study with rabbits.
View Article and Find Full Text PDFCurr Protoc Pharmacol
August 2002
This unit describes a competitive binding assay for the glycine binding site on the NMDA subtype of glutamate receptors in rat brain homogenates. Agonists of the NMDA receptor associated glycine binding site have been proposed as potential therapeutics in cognitive disorders. Conversely, antagonists may be useful in a variety of disorders associated with excessive activation of EAA receptors, including Parkinson, Huntington and Alzheimer Diseases, and neuropathic pain, among others.
View Article and Find Full Text PDFThe indole alkaloid ibogaine (NIH 10567, Endabuse) is currently being examined for its potential utility in the treatment of cocaine and opioid addiction. However, a clearly defined molecular mechanism of action for ibogaine's putative anti-addictive properties has not been delineated. Radioligand binding assays targeting over 50 distinct neurotransmitter receptors, ion channels, and select second messenger systems were employed to establish a broad in vitro pharmacological profile for ibogaine.
View Article and Find Full Text PDF