Publications by authors named "J W Costerton"

The overwhelming majority of bacteria live in slime embedded microbial communities termed biofilms, which are typically adherent to a surface. However, when several Staphylococcus epidermidis strains were cultivated in static liquid cultures, macroscopic aggregates were seen floating within the broth and also sedimented at the test tube bottom. Light- and electron microscopy revealed that early-stage aggregates consisted of bacteria and extracellular matrix, organized in sheet-like structures.

View Article and Find Full Text PDF

Objectives: To identify the presence of bacterial biofilms in nonunions comparing molecular techniques (multiplex polymerase chain reaction and mass spectrometry, fluorescent in situ hybridization) with routine intraoperative cultures.

Methods: Thirty-four patients with nonunions were scheduled for surgery and enrolled in this ongoing prospective study. Intraoperative specimens were collected from removed implants, surrounding tissue membrane, and local soft tissue followed by standard culture analysis, Ibis's second generation molecular diagnostics (Ibis Biosystems), and bacterial 16S rRNA-based fluorescence in situ hybridization (FISH).

View Article and Find Full Text PDF

The social soil bacterium, Myxococcus xanthus, displays a variety of complex and highly coordinated behaviours, including social motility, predatory rippling and fruiting body formation. Here we show that M. xanthus cells produce a network of outer membrane extensions in the form of outer membrane vesicle chains and membrane tubes that interconnect cells.

View Article and Find Full Text PDF

Aim: To evaluate the efficacy of a nonthermal plasma (NTP) at atmospheric pressure on ex vivo biofilm in root canals of extracted teeth.

Methodology: Intracanal contents from three teeth with root canal infections were collected, pooled and grown in thirty-five microCT-mapped root canals of extracted and instrumented human teeth. One group of teeth was treated with NTP, another with 6% NaOCl and one set was left untreated.

View Article and Find Full Text PDF

Background: Understanding nosocomial pathogen transmission is restricted by culture limitations. Novel platforms, such as PCR-based electron spray ionization-time-of-flight-mass spectrometry (ESI-TOF-MS), may be useful as investigational tools.

Methods: Traditional clinical microbiology (TCM) and PCR/ESI-TOF-MS were used to recover and detect microorganisms from the hands and personal protective equipment of 10 burn intensive care unit (ICU) healthcare workers providing clinical care at a tertiary care military referral hospital.

View Article and Find Full Text PDF