Publications by authors named "J Vitorica"

A shared hallmark of age-related neurodegenerative diseases is the chronic activation of innate immune cells, which actively contributes to the neurodegenerative process. In Alzheimer's disease, this inflammatory milieu exacerbates both amyloid and tau pathology. A similar abnormal inflammatory response has been reported in Parkinson's disease, with elevated levels of cytokines and other inflammatory intermediates derived from activated glial cells, which promote the progressive loss of nigral dopaminergic neurons.

View Article and Find Full Text PDF

Primary mitochondrial diseases (PMDs) are associated with pediatric neurological disorders and are traditionally related to oxidative phosphorylation system (OXPHOS) defects in neurons. Interestingly, both PMD mouse models and patients with PMD show gliosis, and pharmacological depletion of microglia, the innate immune cells of the brain, ameliorates multiple symptoms in a mouse model. Given that microglia activation correlates with the expression of OXPHOS genes, we studied whether OXPHOS deficits in microglia may contribute to PMDs.

View Article and Find Full Text PDF
Article Synopsis
  • - Microglial dysfunction is linked to Alzheimer's disease (AD), with a focus on a variant affecting the SIRPβ1 receptor that regulates the clearance of amyloid-β (Aβ).
  • - The study found that a specific insertion in the SIRPβ1 gene alters protein function, increasing the risk of AD and affecting cognitive decline rates in patients with mild cognitive impairment.
  • - Results suggest that this SIRPβ1 variant could influence microglial responses to Aβ and may serve as a potential target for treatment strategies that involve the TREM2-TYROBP pathway.
View Article and Find Full Text PDF

Introduction: Neuroinflammation is a major contributor to the progression of frontotemporal dementia (FTD). Galectin-3 (Gal-3), a microglial activation regulator, holds promise as a therapeutic target and potential biomarker. Our study aimed to investigate Gal-3 levels in patients with FTD and assess its diagnostic potential.

View Article and Find Full Text PDF

Aquaporin-4 (AQP4) plays a crucial role in brain water circulation and is considered a therapeutic target in hydrocephalus. Congenital hydrocephalus is associated with a reaction of astrocytes in the periventricular white matter both in experimental models and human cases. A previous report showed that bone marrow-derived mesenchymal stem cells (BM-MSCs) transplanted into the lateral ventricles of hyh mice exhibiting severe congenital hydrocephalus are attracted by the periventricular astrocyte reaction, and the cerebral tissue displays recovery.

View Article and Find Full Text PDF