Publications by authors named "J Viiri"

Chronic oxidative stress eventually leads to protein aggregation in combination with impaired autophagy, which has been observed in age-related macular degeneration. We have previously shown an effective age-related macular degeneration disease model in mice with nuclear factor-erythroid 2-related factor-2 (NFE2L2) knockout. We have also shown pinosylvin, a polyphenol abundant in bark waste, to increase human retinal pigment epithelium cell viability .

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness worldwide in the elderly population. In our previous studies, we found that deficiencies in the nuclear factor, erythroid 2 like 2 () and peroxisome proliferator-activated receptor gamma coactivator 1-α () genes caused AMD-like pathological phenotypes in mice. In the present work, we show hijacked epithelial-mesenchymal transition (EMT) due to the common loss of and (double knock-out, dKO) genes in aged animals.

View Article and Find Full Text PDF

Increased oxidative stress and mitochondrial damage are observed in protein aggregation diseases, such as age-related macular degeneration (AMD). We have recently reported elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in the retinal pigment epithelial cells (RPE) of the dry AMD-resembling / double knockout (dKO) mouse model. Here, we provide evidence of a disturbance in the autolysosomal machinery handling mitochondrial clearance in the RPE cells of one-year-old /-deficient mice.

View Article and Find Full Text PDF

Background: Productive learning processes and good learning outcomes can be attained by applying the basic elements of active learning. The basic elements include fostering discussions and disputations, facing alternative conceptions, and focusing on conceptual understanding. However, in the face of poor course retention and high dropout rates, even learning outcomes can become of secondary importance.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is a multi-factorial disease that is the leading cause of irreversible and severe vision loss in the developed countries. It has been suggested that the pathogenesis of dry AMD involves impaired protein degradation in retinal pigment epithelial cells (RPE). RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, DNA and lipids and evoke tissue deterioration during the aging process.

View Article and Find Full Text PDF