Publications by authors named "J Verin"

This study evaluated the potential of poly(ethylene vinyl acetate) (EVA) copolymers as matrix formers in miniaturised implants, allowing to achieve controlled drug delivery into the inner ear. Due to the blood-cochlea barrier, it is impossible to reliably deliver a drug to this tiny and highly sensitive organ in clinical practice. To overcome this bottleneck, different EVA implants were prepared by hot melt extrusion, altering the vinyl acetate content and implant diameter.

View Article and Find Full Text PDF

This research work dives into the complexity of hot-melt extrusion (HME) and its influence on drug stability, focusing on solid dispersions containing 30% of glibenclamide and three 50:50 polymer blends. The polymers used in the study are Ethocel Standard 10 Premium, Kollidon SR and Affinisol HPMC HME 4M. Glibenclamide solid dispersions are characterized using thermal analyses (thermogravimetric analysis (TGA) and differential scanning calorimetry), X-ray diffraction and scanning electron microscopy.

View Article and Find Full Text PDF

The production of short chain fatty acids (SCFAs) by the colonic microbiome has numerous benefits for human health, including maintenance of epithelial barrier function, suppression of colitis, and protection against carcinogenesis. Despite the therapeutic potential, there is currently no optimal approach for elevating the colonic microbiome's synthesis of SCFAs. In this study, poly(D,l-lactide-co-glycolide) (PLGA) was investigated for this application, as it was hypothesised that the colonic microbiota would metabolise PLGA to its lactate monomers, which would promote the resident microbiota's synthesis of SCFAs.

View Article and Find Full Text PDF

Polysaccharides were identified, which allow for colon targeting in human Inflammatory Bowel Disease (IBD) patients, as well as in rats and dogs (which are frequently used as animals in preclinical studies). The polysaccharides are degraded by colonic enzymes (secreted by bacteria), triggering the onset of drug release at the target site. It has to be pointed out that the microbiota in rats, dogs and humans substantially differ.

View Article and Find Full Text PDF

This study aimed to evaluate and better understand the potential impact that a layer of surrounding hydrogel (mimicking living tissue) can have on the drug release from PLGA microparticles. Ibuprofen-loaded microparticles were prepared with an emulsion solvent extraction/evaporation method. The drug loading was about 48%.

View Article and Find Full Text PDF