Basket cells are inhibitory interneurons in cortical structures with the potential to efficiently control the activity of their postsynaptic partners. Although their contribution to higher order cognitive functions associated with the medial prefrontal cortex (mPFC) relies on the characteristics of their synaptic connections, the way that they are embedded into local circuits is still not fully uncovered. Here, we determined the synaptic properties of excitatory and inhibitory connections between pyramidal neurons (PNs), cholecystokinin-containing basket cells (CCKBCs) and parvalbumin-containing basket cells (PVBCs) in the mouse mPFC.
View Article and Find Full Text PDFInhibitory circuits in the basal amygdala (BA) have been shown to play a crucial role in associative fear learning. How the excitatory synaptic inputs received by BA GABAergic interneurons are influenced by memory formation, a network parameter that may contribute to learning processes, is still largely unknown. Here, we investigated the features of excitatory synaptic transmission received by the three types of perisomatic inhibitory interneurons upon cue-dependent fear conditioning and aversive stimulus and tone presentations without association.
View Article and Find Full Text PDFThe objective of this study was to evaluate volumetric changes in the upper airway using Cone Beam Computed Tomography (CBCT) in orthodontic patients with maxillary transversal hypoplasia undergoing maxillary disjunction. The influence of factors such as sex, age, and growth pattern on airway volumetric changes was also assessed. The sample consisted of 50 growing patients from the dental clinic of Cardenal Herrera CEU University of Valencia.
View Article and Find Full Text PDFPerisomatic inhibition profoundly controls neural function. However, the structural organization of inhibitory circuits giving rise to the perisomatic inhibition in the higher-order cortices is not completely known. Here, we performed a comprehensive analysis of those GABAergic cells in the medial prefrontal cortex (mPFC) that provide inputs onto the somata and proximal dendrites of pyramidal neurons.
View Article and Find Full Text PDFA key assumption in studies of cortical functions is that excitatory principal neurons, but not inhibitory cells express calcium/calmodulin-dependent protein kinase II subunit α (CaMKIIα) resulting in a widespread use of CaMKIIα promoter-driven protein expression for principal cell manipulation and monitoring their activities. Using neuroanatomical and electrophysiological methods we demonstrate that in addition to pyramidal neurons, multiple types of cortical GABAegic cells are targeted by adeno-associated viral vectors (AAV) driven by the CaMKIIα promoter in both male and female mice. We tested the AAV5 and AAV9 serotype of viruses with either Channelrhodopsin 2 (ChR2)-mCherry or Archaerhodopsin-T-green fluorescent protein (GFP) constructs, with different dilutions.
View Article and Find Full Text PDF