Cell migration is essential throughout the life of multicellular organisms, and largely depends on the spatial and temporal regulation of cytoskeletal dynamics, cell adhesion and signal transduction. Interestingly, Estrogen-related receptor alpha (ERRα) has been identified as a major regulator of cell migration in both physiological and pathological conditions. ERRα is an orphan member of the nuclear hormone receptor superfamily of transcription factors and displays many biological functions.
View Article and Find Full Text PDFBiological pathways rely on the formation of intricate protein interaction networks called interactomes. Getting a comprehensive map of interactomes implies the development of tools that allow one to capture transient and low-affinity protein-protein interactions (PPIs) in live conditions. Here we presented an experimental strategy: the Cell-PCA (cell-based protein complementation assay), which was based on bimolecular fluorescence complementation (BiFC) for ORFeome-wide screening of proteins that interact with different bait proteins in the same live cell context, by combining high-throughput sequencing method.
View Article and Find Full Text PDFMenin, encoded by the MEN1 gene, has been identified as a critical factor regulating ESR1 transcription, playing an oncogenic role in ER+ breast cancer (BC) cells. Here, we further dissected the consequences of menin inactivation in ER+ BC cells by focusing on factors within two major pathways involved in BC, mTOR and MYC. MEN1 silencing in MCF7 and T-47D resulted in an increase in phosphor-p70S6K1, phosphor-p85S6K1 and phosphor-4EBP1 expression.
View Article and Find Full Text PDFCell migration depends on the dynamic organisation of the actin cytoskeleton and assembly and disassembly of focal adhesions (FAs). However, the precise mechanisms coordinating these processes remain poorly understood. We previously identified the oestrogen-related receptor α (ERRα) as a major regulator of cell migration.
View Article and Find Full Text PDF