Publications by authors named "J Van Kerrebrouck"

We present an approach for the heterogeneous integration of InP semiconductor optical amplifiers (SOAs) and lasers on an advanced silicon photonics (SiPh) platform by using micro-transfer-printing (µTP). After the introduction of the µTP concept, the focus of this paper shifts to the demonstration of two C-band III-V/Si photonic integrated circuits (PICs) that are important in data-communication networks: an optical switch and a high-speed optical transmitter. First, a C-band lossless and high-speed Si Mach-Zehnder interferometer (MZI) switch is demonstrated by co-integrating a set of InP SOAs with the Si MZI switch.

View Article and Find Full Text PDF

Aside from a clinical interest in electroencephalography (EEG) measurements of real-time data with a high temporal resolution, there is a demand for acquisition systems that are operable outside the laboratory environment. In this study, we designed a wearable and low-power EEG system for multichannel EEG acquisition beyond the lab doors. Around-the-ear cEEGrid electrodes are used to capture 8 biopotential channels which are amplified by low-power precision instrumentation amplifiers and passed on to an analog-to-digital converter (ADC).

View Article and Find Full Text PDF

To address the rising demand for high-speed wireless data links, communication systems operating at frequencies beyond [Formula: see text] are being targeted. A key enabling technology in the development of these wireless systems is the phased antenna array. Yet, the design and implementation of such steerable antenna arrays at frequencies over [Formula: see text] comes with a multitude of challenges.

View Article and Find Full Text PDF

Integrated photonic reservoir computing has been demonstrated to be able to tackle different problems because of its neural network nature. A key advantage of photonic reservoir computing over other neuromorphic paradigms is its straightforward readout system, which facilitates both rapid training and robust, fabrication variation-insensitive photonic integrated hardware implementation for real-time processing. We present our recent development of a fully-optical, coherent photonic reservoir chip integrated with an optical readout system, capitalizing on these benefits.

View Article and Find Full Text PDF

We present recent results on compact and power efficient C-band distributed feedback lasers through adhesive bonding of a III-V die onto a silicon-on-insulator circuit. A wall-plug efficiency up to 16% is achieved for bias currents below 40 mA. The laser cavity is 180 µm long and a single facet output power up to 11 mW is measured at 20 °C by incorporating a broadband reflector in the silicon waveguide at one side of the cavity.

View Article and Find Full Text PDF