This study examined the effects of unilateral thermocoagulatory cortical lesion on the pattern of neuropeptide Y immunostaining in the rat ipsilateral striatum at 4 and 21 days post-lesion. Light microscopic analysis showed a significant increase in the number of neuropeptide Y-positive neurons vs. control at both time points; paradoxically, the intraneuronal level of labelling significantly decreased at 4 days post-lesion but increased at 21 days post-lesion.
View Article and Find Full Text PDFStriatin, a recently isolated rat brain calmodulin-binding protein belonging to the WD-repeat protein family, is thought to be part of a calcium signal transduction pathway presumably specific to excitatory synapses, at least in the striatum. This study was aimed to specify the cellular and subcellular localization of striatin, and to determine the possible synaptic relationships between the two main excitatory afferent pathways, arising from the cerebral cortex and the thalamus, and the striatin-containing elements, in the rat striatum. Anterograde tract-tracing by means of biotinylated dextran amine injection in the frontoparietal cerebral cortex or the parafascicular nucleus of the thalamus was combined with immunogold detection of striatin.
View Article and Find Full Text PDFThis study examined at the ultrastructural level the putative relationships between afferent fibres coming from the parafascicular nucleus of the thalamus and neuropeptide Y (NPY)-containing neurones in the rat striatum. Experiments used a combination of anterograde transport of the biotin dextran amine to label the thalamo-striatal pathway and immunogold labelling to reveal the NPY-containing neurones at the electron microscopic level. Examination of sections from three animals failed to demonstrate thalamic terminals in synaptic contact with NPY-immunoreactive dendrites or cell bodies, although both types of labelled elements were frequently involved in synaptic complex with unlabelled profiles.
View Article and Find Full Text PDFIn order to investigate the basic cellular mechanisms involved in neuronal interactions within the striatum, we prepared a primary striatal cell culture from rat fetal brain in chemically defined medium. Using morphological and whole-cell recording methods, we observed that an intensive neuritic elongation with a progressive build up of a sodium-dependent electrogenesis occurred during the first week of culture. Morphologically mature synapses began to develop after 10 days in vitro.
View Article and Find Full Text PDFIn a previous study we demonstrated that grafted dopamine (DA) neurons are able to induce an early and widespread normalization of DA-neuropeptide Y (NPY) interactions in the host striatum previously deprived of its DA input. Since similar recoveries were found to occur in striatal areas densely or poorly reinnervated by the graft, the question was raised as to what mechanisms (synaptic or volumic release) were involved in these functional effects. Ultrastructural analysis of graft-to-host relationships was performed using single--and double--immunolabelling techniques to detect neurons containing tyrosine hydroxylase (TH) and NPY, with a view to analysing the early establishment of synaptic connectivity in various areas of the host striatum.
View Article and Find Full Text PDF