Crit Rev Microbiol
December 2016
A Microbial Fuel Cell is a bioelectrochemical device that exploits metabolic activities of living microorganisms for generation of electric current. The usefulness and unique and exclusive architecture of this device has received wide attention recently of engineers and researchers of various disciplines such as microbiologists, chemical engineers, biotechnologists, environment engineers and mechanical engineers, and the subject of MFCs has thereby progressed as a well-developed technology. Sustained innovations and continuous development efforts have established the usefulness of MFCs towards many specialized and value-added applications beyond electricity generation, such as wastewater treatment and implantable body devices.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2012
Interesting magnetic properties and spin-exchange interactions along various possible pathways in the half-integral spin quantum magnetic tetramer system: A(2)PO(4)OH (A=Co, Cu) are investigated. Interplay of structural distortion and the magnetic properties with the evolution of localized band structure explain the gradual transition from a three-dimensional antiferromagnet to a low-dimensional frustrated magnetic system along the series. A detailed study of the exchange mechanism in this system explores various possibilities of complex magnetic interaction.
View Article and Find Full Text PDFMn(III) tetra(meta-fluorophenyl)porphyrin-tetracyanoethenide coordination polymer (abbreviated meta-F) was synthesized and crystallographically and magnetically characterized. The compound crystallizes in the space group C2/c with four equivalent molecules in the unit cell arranged along two symmetry related nonparallel linear chain directions. Magnetic properties were studied by SQUID dc magnetization and ac susceptibility techniques and high field-high frequency electron spin resonance (HF-ESR).
View Article and Find Full Text PDFJ Phys Condens Matter
September 2011
The temperature dependent current-voltage (J-V) characteristics of 20 nm thick iron-phthalocyanine films are investigated in the temperature range of 300-30 K, and in the bias range of ±200 V. In the temperature range of 300-100 K, the charge transport is governed by bulk-limited processes with a bias dependent crossover from Ohmic (J∼V) to exponentially distributed shallow trap mediated space-charge-limited conduction (J∼V(α), α ≥ 2) to space-charge-limited conduction with field enhanced mobility (lnμ∼E(1/2)). However, at temperatures less than 100 K, the charge transport is electrode-limited, and undergoes a bias dependent transition from Schottky (lnJ∼V(1/2)) to multistep tunneling.
View Article and Find Full Text PDFWe present room temperature chemiresistive gas sensing characteristics of drop casted sulphonated copper phthalocyanine (CuTsPc) films. It has been demonstrated that these films are highly selective to Cl(2) and the sensitivity in the 5-2000 ppb range varies linearly between 65 and 625%. However, for concentrations >or=2000 ppb, the response becomes irreversible, which is found to be due to the chemical bond formation between Cl(2) and SO(3)Na group of CuTsPc films.
View Article and Find Full Text PDF