Atomically thin 2D materials present the potential for advancing membrane separations via a combination of high selectivity (from molecular sieving) and high permeance (due to atomic thinness). However, the creation of a high density of precise nanopores (narrow-size-distribution) over large areas in 2D materials remains challenging, and nonselective leakage from nanopore heterogeneity adversely impacts performance. Here, we demonstrate protein-enabled size-selective defect sealing (PDS) for atomically thin graphene membranes over centimeter scale areas by leveraging the size and reactivity of permeating proteins to preferentially seal larger nanopores (≥4 nm) while preserving a significant amount of smaller nanopores (via steric hindrance).
View Article and Find Full Text PDFThe disassembly and reassembly of nucleosomes by histone chaperones is an essential activity during eukaryotic transcription elongation. This highly conserved process maintains chromatin integrity by transiently removing nucleosomes as barriers and then restoring them in the wake of transcription. While transcription elongation requires multiple histone chaperones, there is little understanding of how most of them function and why so many are required.
View Article and Find Full Text PDFLancet Diabetes Endocrinol
January 2025
Background: Advances in paediatric type 1 diabetes management and increased use of diabetes technology have led to improvements in glycaemia, reduced risk of severe hypoglycaemia, and improved quality of life. Since 1993, progressively lower HbA targets have been set. The aim of this study was to perform a longitudinal analysis of HbA, treatment regimens, and acute complications between 2013 and 2022 using data from eight national and one international paediatric diabetes registries.
View Article and Find Full Text PDF