Idiopathic pulmonary fibrosis (IPF), a progressive disorder of unknown etiology, is characterized by pathological lung fibroblast activation and proliferation resulting in abnormal deposition of extracellular matrix proteins within the lung parenchyma. The pathophysiological roles of exosomal microRNAs in pulmonary fibrosis remain unclear; therefore, we aimed to identify and characterize fibrosis-responsive exosomal microRNAs. We used microRNA array analysis and profiled the expression of exosome-derived miRNA in sera of C57BL/6 mice exhibiting bleomycin-induced pulmonary fibrosis.
View Article and Find Full Text PDFBackground: Pleurodesis is the standard of care for non-small cell lung cancer (NSCLC) patients with symptomatic malignant pleural effusion (MPE). However, there is no standard management for MPE uncontrolled by pleurodesis. Most patients with unsuccessful MPE control are unable to receive effective chemotherapy.
View Article and Find Full Text PDFBackground: Although aberrant proliferation and activation of lung fibroblasts are implicated in the initiation and progression of idiopathic pulmonary fibrosis (IPF), the underlying mechanisms are not well characterized. Numerous microRNAs (miRNAs) have been implicated in this process; however, miRNAs derived from exosomes and the relevance of such miRNAs to fibroblast-to-myofibroblast differentiation are not well understood. In this study, we attempted to identify exosome-derived miRNAs relevant to fibrosis development.
View Article and Find Full Text PDFBackground: Idiopathic pulmonary fibrosis (IPF) is a progressive disease with high mortality, and the pathogenesis of the disease is still incompletely understood. Although lymphocytes, especially CD4CD25FoxP3 regulatory T cells (Tregs), have been implicated in the development of IPF, contradictory results have been reported regarding the contribution of Tregs to fibrosis both in animals and humans. The aim of this study was to investigate whether a specific T cell subset has therapeutic potential in inhibiting bleomycin (BLM)-induced murine pulmonary fibrosis.
View Article and Find Full Text PDFPathogenesis of idiopathic pulmonary fibrosis (IPF) remains unclear. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that participates in the assembly and turnover of the extracellular matrix, whose expression is regulated by transforming growth factor (TGF)-β1 through activation of mammalian target of rapamycin complex 2 (mTORC2). Exchange factor found in platelets, leukemic, and neuronal tissues (XPLN) is an endogenous inhibitor of mTORC2.
View Article and Find Full Text PDF