To understand chemoresistance in the context of cancer stem cells (CSC), a cisplatin resistance model was developed using a high-grade serous ovarian cancer patient-derived, cisplatin-sensitive sample, PDX4. As a molecular subtype-specific stem-like cell line, PDX4 was selected for its representative features, including its histopathological and mutation status, and exposed to cisplatin in vitro. In the cisplatin-resistant cells, transcriptomics were carried out, and cell morphology, protein expression, and functional status were characterized.
View Article and Find Full Text PDFOvarian cancer remains the most lethal gynecologic malignancy in the USA. For over twenty years, epithelial-mesenchymal transition (EMT) has been characterized extensively in development and disease. The dysregulation of this process in cancer has been identified as a mechanism by which epithelial tumors become more aggressive, allowing them to survive and invade distant tissues.
View Article and Find Full Text PDFWe aimed to determine the incidence, treatment regimen, and treatment outcomes (including progression-free survival and overall survival) of gynecologic carcinosarcoma, a rare, aggressive, and understudied gynecologic malignancy. This retrospective review included all patients with gynecologic cancers diagnosed and treated at a single tertiary care comprehensive cancer center between January 2012 and May 2021. A total of 2116 patients were eligible for review, of which 84 cases were identified as carcinosarcoma: 66 were uterine (5.
View Article and Find Full Text PDFIntroduction: Treatment-related toxicity following either chemo- or radiotherapy can create significant clinical challenges for HNSCC cancer patients, particularly those with HPV-associated oropharyngeal squamous cell carcinoma. Identifying and characterizing targeted therapy agents that enhance the efficacy of radiation is a reasonable approach for developing de-escalated radiation regimens that result in less radiation-induced sequelae. We evaluated the ability of our recently discovered, novel HPV E6 inhibitor (GA-OH) to radio-sensitize HPV+ and HPV- HNSCC cell lines to photon and proton radiation.
View Article and Find Full Text PDF