Publications by authors named "J U Kang"

In the immunosuppressive tumor microenvironment (TME), tumor-associated macrophages (TAMs) predominantly exhibit an immunosuppressive M2 phenotype, which facilitates tumor proliferation and metastasis. Although current strategies aimed at reprogramming TAMs hold promise, their sustainability and effectiveness are limited due to repeated injections. Herein, a bacterial therapy platform containing two engineered strains was developed.

View Article and Find Full Text PDF

Background: Preeclampsia is a hypertensive disorder of pregnancy characterized by systemic endothelial dysfunction. The pathophysiology of preeclampsia remains incompletely understood. This study used human venous endothelial cell (EC) transcriptional profiling to investigate potential novel mechanisms underlying EC dysfunction in preeclampsia.

View Article and Find Full Text PDF

Water is pursued as an electrolyte solvent for its non-flammable nature compared to traditional organic solvents, yet its narrow electrochemical stability window (ESW) limits its performance. Solvation chemistry design is widely adopted as the key to suppress the reactivity of water, thereby expanding the ESW. In this study, an acetamide-based ternary eutectic electrolyte achieved an ESW ranging from 1.

View Article and Find Full Text PDF

With reduced dimensionality and a high surface area-to-volume ratio, two-dimensional (2D) semiconductors exhibit intriguing electronic properties that are exceptionally sensitive to surrounding environments, including directly interfacing gate dielectrics. These influences are tightly correlated to their inherent behavior, making it critical to examine when extrinsic charge carriers are intentionally introduced to the channel for complementary functionality. This study explores the physical origin of the competitive transition between intrinsic and extrinsic charge carrier conduction in extrinsically -doped MoS, highlighting the central role of interactions of the channel with amorphous gate dielectrics.

View Article and Find Full Text PDF