Publications by authors named "J Tumlinson"

Plants adapt to balance growth-defense tradeoffs in response to both biotic and abiotic stresses. Green leaf volatiles (GLVs) are released after biotic and abiotic stresses and function as damage-associated signals in plants. Although, GLVs enter plants primarily through stomata, the role of stomatal regulation on the kinetics of GLV uptake remains largely unknown.

View Article and Find Full Text PDF

Plants perceive environmental stresses as whole organisms via distant signals conveying danger messages through their vasculature. In parallel to vascular transport, airborne plant volatile compounds, including green leaf volatiles (GLVs), can bypass the lack of vascular connection. However, some small volatile compounds move through the vasculature; such vascular transport is little known about GLVs.

View Article and Find Full Text PDF

My research focuses on elucidating the chemical communication systems linking plants, herbivores, and natural enemies. My interests in integrating chemistry and agriculture led to my graduate studies in the emerging field of chemical ecology. My thesis research resulted in the identification, synthesis, and application of boll weevil sex pheromones.

View Article and Find Full Text PDF

Several herbivorous caterpillars contain effectors in their oral secretions that alter the emission of green leaf volatiles (GLVs) produced by the plants upon which the caterpillars are feeding. These effectors include an isomerase, a fatty acid dehydratase (FHD), and a heat-stable hexenal trapping (HALT) molecule. GLVs serve as signaling compounds in plant-insect interactions and inter-and intra-plant communication.

View Article and Find Full Text PDF

This review provides an overview, analysis, and reflection on insect elicitors and effectors (particularly from oral secretions) in the context of the 'arms race' with host plants. Following injury by an insect herbivore, plants rapidly activate induced defenses that may directly or indirectly affect the insect. Such defense pathways are influenced by a multitude of factors; however, cues from the insect's oral secretions are perhaps the most well studied mediators of such plant responses.

View Article and Find Full Text PDF