Publications by authors named "J Trout Lowen"

Conductive biomaterials may capture native or exogenous bioelectric signaling, but incorporation of conductive moieties is limited by cytotoxicity, poor injectability, or insufficient stimulation. Microgel annealed scaffolds are promising as hydrogel-based materials due to their inherent void space that facilitates cell migration and proliferation better than nanoporous bulk hydrogels. Conductive microgels are generated from poly(ethylene) glycol (PEG and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) to explore the interplay of void volume and conductivity on myogenic differentiation.

View Article and Find Full Text PDF

Background And Aims: Changes in kelp abundances on regional scales have been highly variable over the past half-century owing to strong effects of local and regional drivers. Here, we assess patterns and dominant environmental variables causing spatial and interspecific variability in kelp persistence and resilience to change in Nova Scotia over the past 40 years.

Methods: We conducted a survey of macrophyte abundance at 251 sites spanning the Atlantic coast of Nova Scotia from 2019 to 2022.

View Article and Find Full Text PDF

Bioelectricity is an understudied phenomenon to guide tissue homeostasis and regeneration. Conductive biomaterials may capture native or exogenous bioelectric signaling, but incorporation of conductive moieties is limited by cytotoxicity, poor injectability, or insufficient stimulation. Microgel annealed scaffolds are promising as hydrogel-based materials due to their inherent void space that facilitates cell migration and proliferation better than nanoporous bulk hydrogels.

View Article and Find Full Text PDF

This review summarizes the pathomorphological sequences of nephron loss in human diabetic nephropathy (DN). The relevant changes may be derived from two major derangements. First, a failure in the turnover of the glomerular basement membrane (GBM) based on an increased production of GBM components by podocytes and endothelial cells leading to the thickening of the GBM and accumulation of worn-out GBM in the mesangium.

View Article and Find Full Text PDF

Microgels are an emerging platform for in vitro models and guiding cell fate due to their inherent porosity and tunability. This work describes a light-based technique for rapidly annealing microgels across a range of diameters. Utilizing 8-arm poly(ethylene) glycol-vinyl sulfone, the number of arms available for crosslinking, functionalization, and annealing is stoichiometrically controlled.

View Article and Find Full Text PDF